Electronics and Control

UAV Guidance Law for Coordinated Standoff Target Tracking

  • WANG Shulei ,
  • WEI Ruixuan ,
  • GUO Qing ,
  • WEI Wenjie
Expand
  • 1. UAV Application Engineering Department, Air Fore Engineering University, Xi'an 710038, China;
    2. Combat Simulation Experimental Lab, Air Fore Command College, Beijing 100097, China

Received date: 2013-09-04

  Revised date: 2013-11-15

  Online published: 2013-12-04

Supported by

Aeronautical Science Foundation of China(20135896027)

Abstract

A lateral and longitudinal guidance law of unmanned aerial vehicles (UAVs) for coordinated standoff target tracking is proposed. The reference point guidance (RPG) is modified as the lateral guidance law of the UAV, and the convergence process of the relative distance between the UAV and the target is modeled by nonlinear differential equations. The asymptotic stability of the modified RPG is demonstrated based on this nonlinear system, and then the relationship between the RPG parameter and system performance is derived as the basis for parameter selection. Finally, a longitudinal guidance law is provided, and its asymptotic stability is demonstrated. According to simulations, the tracking error and integrated time absolute error (ITAE) of the modified RPG are smaller than those obtained from Lyapunov vector field guidance (LVFG) and model-based predictive control (MPC). Thus the modified RPG possesses faster response speed and higher steady state accuracy than LVFG and MPC.

Cite this article

WANG Shulei , WEI Ruixuan , GUO Qing , WEI Wenjie . UAV Guidance Law for Coordinated Standoff Target Tracking[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(6) : 1684 -1693 . DOI: 10.7527/S1000-6893.2013.0470

References

[1] Wang L. Modeling and optimization multi-UAVs cooperative target tracking. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011.(in Chinese) 王林. 多无人机协同目标跟踪问题建模与优化技术研究. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.

[2] Wise R A, Rysdyk R T. UAV coordination for autonomous target tracking, AIAA-2006-6453. Reston: AIAA, 2006.

[3] Lawrence D, Frew E, Pisano W. Lyapunov vector fields for autonomous UAV flight control, AIAA-2009-6317. Reston: AIAA, 2005.

[4] Frew E W, Lawrence D A, Morris S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 290-306.

[5] Yoon S, Kim Y. Decentralized phase angle control for standoff tracking using multiple unmanned aircraft//International Conference on Control, Automation and Systems. Piscataway: IEEE, 2010: 2124-2127.

[6] Chen H, Chang K, Agate C S. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance[J]. IEEE Transactions on Aerospace and Electronic System, 2013, 49(2): 840-856.

[7] Lim S, Kim Y, Lee D, et al. Standoff target tracking using a vector field for multiple unmanned aircrafts[J]. Journal of Intelligent and Robotic Systems, 2013, 69(1-4): 347-360.

[8] Kim S, Oh H, Tsourdos A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 557-566.

[9] Zhou W. Research on the key techniques of cooperative target tracking flight control for multi-UAV. Xi'an, College of Engineering, Air Force Engineering University, 2010. (in Chinese) 周炜. 多无人机协同目标跟踪飞行控制关键技术研究. 西安: 空军工程大学工程学院, 2010.

[10] Xi Y G, Li D W, Lin S. Model predictive control — status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236. (in Chinese) 席裕庚, 李德伟, 林姝. 模型预测控制—现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.

[11] Ducard G, Kulling K C, Geering H P. A simple and adaptive on-line path planning system for a UAV//Proceedings of the 15th Mediterranean Conference on Control and Automation. Piscataway: IEEE, 2007: 1-6.

[12] Park S, Deyst J, How J P. Performance and Lyapunov stability of a nonlinear path-following guidance method[J]. Journal of Guidance,Control, and Dynamics, 2007, 30(6): 1718-1728.

[13] Chen Z J, Wei J Z, Wang Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083. (in Chinese) 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083.

[14] Blanchini F. Set invariance in control[J]. Automatica, 1999, 35(11): 1747-1767.

[15] Khalil H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002: 111-174.

[16] Wu S T, Fei Y H. Flight control system[M]. Beijing: Beihang University Press, 2005: 46-64.(in Chinese) 吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005: 46-64.

Outlines

/