ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic Mechanical Property Tests and Constitutive Model of Pure Iron Material
Received date: 2013-09-03
Revised date: 2013-11-05
Online published: 2013-11-20
To study the dynamic mechanical property and built constitutive model of pure iron material are the basis of engineering application and numerical simulation. The dynamic mechanical property test of pure iron material are carried out using Instron material testing system and split Hopkinson pressure bar apparatus under different strain rates (10-3-5×104s-1) at room temperature and different temperature (200-800℃) at high strain rate 104s-1.The stress-strain curves of pure iron are measured at high temperatures and high strain rates. The test results show that the plastic flow stress of pure iron material is sensitive to strain rate and temperature and has the effect of strain hardening, strain rate hardening plasticizing effect and thermal softening. Based on the Power-Law constitutive model, the dynamic constitutive model parameter with high strain rates and high temperatures of pure iron material is obtained by fitting the test results. The model predictions have a good agreement with test data and the dynamic constitutive model can make a satisfied prediction to the mechanial behavior of pure iron materials under dynamic loads.
KONG Jinxing , CHEN Hui , HE Ning , LI Liang , JIANG Feng . Dynamic Mechanical Property Tests and Constitutive Model of Pure Iron Material[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(7) : 2063 -2071 . DOI: 10.7527/S1000-6893.2013.0460
[1] Tian W S, Yue D Q. A study of pure iron machinability [J]. Journal of Taiyuan Heavy Machinery Institute, 1990, 11(2): 17-24. (in Chinese) 田文生, 乐兑谦. 纯铁的切削性能研究[J]. 太原重型机械学院学报, 1990, 11(2): 17-24.
[2] Liu J J. Relation between the carbon content and the magnetic property for electric pure iron[J]. Aero Weaponry, 2002 (2): 47-49. (in Chinese) 刘俊杰. 电工纯铁含碳量与磁性能的关系[J]. 航空兵器,2002 (2): 47-49.
[3] Bao W P, Zhao Y Z, Li C M, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010, 46(4): 74-79. (in Chinese) 包卫平, 赵昱臻, 李春明, 等. 纯铁高温高应变率下的动态本构关系试验研究[J]. 机械工程学报, 2010, 46(4): 74-79.
[4] Bao W P, Ren X P, Jin H Q. Dynamic stress-strain behavior of pure iron for shaped charge liners[J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 978-982. (in Chinese) 包卫平, 任学平, 金宏全. 纯铁药型罩材料的动态应力-应变行为[J]. 北京科技大学学报, 2009, 31(8): 978-982.
[5] Chen Y T, Tang X J, Li Q Z. Shock-induced phase transition and spalling characteristic in pure iron and FeMnNi alloy[J]. Chinese Physics B, 2010, 19(5): 056402.
[6] Guo W G, Liu F L, Su J. A review of plastic flow characteristic and constitutive mode of several typical BCC metals [J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 143-149. (in Chinese) 郭伟国, 刘风亮, 苏静. 几种典型BCC金属的塑性流动特性[J]. 航空工程进展, 2010, 1(2): 143-149.
[7] Guo W G, Nemat-Nasser S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11): 1090-1103.
[8] Yin W, Zheng H F. On dynamic strengthening mechanism of metallic material[J]. Part A: Physical Testing, 2002, 38(3): 99-100. (in Chinese) 殷雯, 郑鸿飞. 金属材料动态强化机制的探讨[J]. 理化检验-物理分册, 2002, 38(3): 99-100.
[9] Yang Z Y, Ding Y L, Chen J Y. Investigation on shock wave plasticization effect of iron[J]. Ordnance Material Science and Engineering, 2002, 25(6): 15-17. (in Chinese) 杨卓越, 丁雅莉, 陈嘉砚. 工业纯铁爆炸冲击波增塑效应研究[J]. 兵器材料科学与工程, 2002, 25(6): 15-17.
[10] Lin Z, Wang Y L, Lin J P, et al. Dynamic restoration mechanism during hot compression of high purity α-Fe [J]. Journal of Aeronautical Materials, 2003, 23(3): 23-26. (in Chinese) 林志, 王艳丽, 林均品, 等. 高纯α-Fe热压缩动态复原机制的研究[J]. 航空材料学报, 2003, 23(3): 23-26.
[11] Li Y L, Suo T, Guo W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion and Shock Waves, 2005, 25(6): 487-492. (in Chinese) 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统[J]. 爆炸与冲击, 2005, 25(6): 487-492.
[12] Meyers M A. Dynamic behavior of materials[M]. Zhang Qingming, Liu Yan, Huang Fenglei, et al, translated. Beijing: National Defence Industry Press, 2006: 225-260. (in Chinese) Meyers M A. 材料的动力学行为[M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 225-260.
[13] Song W X. Physical metallurgy[M]. Beijing: Metallurgical Industry Press, 1989: 184-214. (in Chinese) 宋维锡. 金属学[M]. 北京: 冶金工业出版社, 1989: 184-214.
[14] Voronova L M, Degtyarev M V, Chashehukhina T I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening[J]. The Physics of Metals and Metallography, 2007, 104(3): 262-273.
[15] Liu B S, Lang L H, Yang X Y, et al. A rate dependent constitutive model based on microstructure evolution[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1329-1335. (in Chinese) 刘宝胜, 朗利辉, 杨希英, 等. 一种基于微观组织演化的率形式本构模型[J]. 航空学报, 2012, 33(7): 1329-1335.
[16] Zerilli F J, Armstrong R W. Dislocation mechanics based constitutive relations for material dynamics calculation [J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures//Processing of the Seventh International Symposium on Ballistics, 1983: 541-547.
[18] AdvantEdge T W. 2D user's manual[M]. 2011: 191-195.
[19] Jiang F, Li J F, Sun J, et al. Al7050-T7451 turning simulation based on the modified power-law material model [J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9-12): 871-880.
/
〈 | 〉 |