ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A Captive Trajectory System Using Double Closed-loop Velocity Control
Received date: 2013-07-22
Revised date: 2013-10-12
Online published: 2013-11-11
Supported by
National Natural Science Foundation of China (51075385)
The captive trajectory simulation (CTS) system can be operated in two modes, the position control mode and the velocity control mode. Position control mode with closed-loop is employed in existing CTS systems of high-speed wind tunnels. Its disadvantages are low efficiency and possible off-trajectory collisions caused by positioning the store model using a "move and pause" technique. Therefore, a velocity control strategy with a double closed-loop is investigated in this paper by establishing an error control loop for the forces and moments caused by the airflow on the store model. The velocity control strategy allows the store model to move continuously along the trajectory, dynamically generating the proper velocity scaling and always positioning the store using velocity control commands while a trajectory is being generated thus finally realizing the velocity control of the CTS. Simulation experiments and wind tunnel tests show that the principle is correct, its trajectories compare favorably with those obtained by the position control mode, while the productivity is increased by about 50%. A greater number of points on the trajectory can be obtained, and the off-trajectory collisions are eliminated. Therefore the double closed-loop strategy is satisfactory and has broad application prospects.
ZHOU Run , HUANG Xuhui , ZHANG Zhengyu , LI Ping . A Captive Trajectory System Using Double Closed-loop Velocity Control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(6) : 1522 -1529 . DOI: 10.7527/S1000-6893.2013.0432
[1] Huang X H, Pang X D, Song B. Development of a new captive trajectory simulation system in the 1.2 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 95-98. (in Chinese) 黄叙辉, 庞旭东, 宋斌. 1.2米跨超声速风洞新型捕获轨迹系统研制[J]. 实验流体力学, 2008, 22(2): 95-98.
[2] Huang X H, Luo X F, Yu Z S. Design & development of a new captive trajectory simulation system in FL-24 wind tunnel[J]. Acta Aerodynamica Sinica, 2008, 26(2): 145-149. (in Chinese) 黄叙辉, 罗新福, 于志松. FL-24风洞新型捕获轨迹系统设计与发展[J]. 空气动力学报, 2008, 26(2): 145-149.
[3] Navair A C, Md P R. Lessons learned in 30 years of store separation testing, AIAA-2009-0098. Reston: AIAA, 2009.
[4] Carman J B, Hill D W, Christopher J P. Store separation testing techniques at the Arnold Engineering Development Center (Volume II, description of captive trajectory store separation testing in the aerodynamic wind tunnel (4T)), AEDC-TR-79-1. Tennessee: Arnold Engineering Development Center, 1980.
[5] Coulton D G. Recent developments in data acquisition and control systems at the Aircraft Research Association Limited//IEEE Instrumentation in Aerospace Simulation Facilities, 1991: 196-205.
[6] Gargon F, Taravel Ph, Raffin J C. Recent developments in captive trajectory systems of the ONERA modane wind tunnels, AIAA-2001-0579. Reston: AIAA, 2001.
[7] Zhu R S, Wang F, Li P, et al. Continuous dynamic simulation test of the captive trajectory used in 2.4 m transonic wind tunnel//IEEE Chinese Control and Decision Conference, 2011: 1240-1244.
[8] Cui X C, Xing H Q, Zhang R, et al. CTS experimental technique of FL-2 wind tunnel//Chinese Aerodynamics Research Society, 2007: 172-176. (in Chinese) 崔晓春, 邢汉奇, 张然, 等. FL-2风洞CTS实验技术//第一届近代实验空气动力学会议论文集, 2007: 172-176.
[9] Zilberman M, Shay M. The use of the captive trajectory system for computation of trajectories to the impact point, AIAA-1992-4021. Reston: AIAA, 1992.
[10] Veazey D T, Hopf J C. Comparison of aerodynamic data obtained in the Arnold Engineering Development Center wind tunnels 4T and 16T, AIAA-1998-2874. Reston: AIAA, 1998.
[11] Carter R, Lind R. Trajectory optimization for guided store separation, AIAA-2012-4686. Reston: AIAA, 2012.
[12] Carter R E. Store separation equations of motion, AIAA-2012-4957. Reston: AIAA, 2012.
[13] Bai Y H, Quan L. Control strategy of the electro-hydraulic position and speed hybrid servo system[J]. Journal of Mechanical Engineering, 2010, 46(24): 150-155. (in Chinese) 白艳红, 权龙. 电液位置速度符合伺服系统控制策略[J]. 机械工程学报, 2010,46(24): 150-155.
[14] Zhang Q L, Ni F L, Zhu Y Y, et al. Compliant grasp strategy for three-fingered space robot end-effector[J]. Robot, 2011, 33(4): 427-433. (in Chinese) 张庆利, 倪风雷, 朱映远, 等. 三手指空间机器人末端执行器的柔顺抓握策略[J]. 机器人, 2011, 33(4): 427-433.
[15] Tan X M, Zhao D B, Yi J Q, et al. Motion control of omnidirectional mobile manipulators(part I)—modeling and control[J]. Chinese Journal of Mechanical Engineering, 2009, 45(1): 35-41. (in Chinese) 谭湘敏, 赵冬斌, 易建强, 等. 全方位移动机械手运动控制I——建模与控制[J]. 机械工程学报, 2009, 45(1): 35-41.
[16] Ye D, Sun Z W, Wang J Y. Control strategy of hybrid actuator for agile satellites[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1108-1115. (in Chinese) 叶东, 孙兆伟, 王剑颖. 敏捷卫星的联合执行机构控制策略[J]. 航空学报, 2012, 33(6): 1108-1115.
[17] Zhang F H, Fu Y L, Wang S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2347-2354. (in Chinese) 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12): 2347-2354.
[18] Smith N E, Gobb R G, Pierce S J. Optimal collision avoidance trajectories for unmanned/remotely piloted aircraft, AIAA-2013-4619. Reston: AIAA, 2013.
[19] Saulnier K, Perez D, Tilton G, et al. Operational capabilities of a six degrees of freedom spacecraft simulator, AIAA-2013-5253. Reston: AIAA, 2013.
/
〈 | 〉 |