ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Improvement of Engineering Dimension Driving Principle and Its Application to Tolerance Analysis
Received date: 2013-07-18
Revised date: 2013-10-12
Online published: 2013-10-30
Supported by
Industry-university-research Innovation Fund of AVIC (CXY2010SH28); A Pre-research Project of The General Amament Department (513180102)
Currently, geometrical and implicit constraints cannot be driven with the functional dimension driving theory, which limits the application of the geometrical element chain method (GECM). To solve this problem, this paper presents a modification of the functional dimension driving theory and constructs an algorithm of tolerance analysis oriented to the virtual constraint model (VCM) to extend the application scope of GECM. Firstly, the causes are analyzed for the driving failure of the functional dimensions, and the necessary and sufficient conditions are given for the existence of the mapping relationship. Secondly, the concept of VCM is put forward for the models in which the functional dimension driving principle doesn't work, and the tolerance analysis algorithm of the VCM is constructed. Finally, an example is given to illustrate the validity of the VCM and the effectiveness of the algorithm in this paper.
Key words: models; constraint theory; fits and tolerances; dimension chain; dimension driving
MENG Biao , WANG Bo . Improvement of Engineering Dimension Driving Principle and Its Application to Tolerance Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(6) : 1740 -1749 . DOI: 10.7527/S1000-6893.2013.0418
[1] Zhang K F. Assembly error stack-up analysis and optimum tolerancing for aircraft assembly. Xi'an: School of Mechatronic Engineering, Northwestern Polttechnical University, 2006. (in Chinese) 张开富. 飞机部件装配误差累积分析与容差优化方法研究. 西安: 西北工业大学机电学院, 2006.
[2] Peng H P, Jiang X Q, Xu Z G, et al. Optimal tolerance design based on the quality loss function with multi-correlated characterisitics[J].China Mechanical Engineering, 2008, 19(5): 590-594.(in Chinese) 彭和平, 蒋向前, 徐振高, 等. 基于多重相关特征质量损失函数的公差优化设计[J]. 中国机械工程, 2008, 19(5): 590-594.
[3] Armillotta A, Semeraro Q. Geometric tolerance specification[M]. 2010: 3-37.
[4] Wang H, Ning R, Yan Y. Simulated toleranced CAD geometrical model and automatic generation of 3D dimension chains[J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(9-10): 1019-1025.
[5] Dionne R, Baron L, Mascle C. A C++ library for the automatic interpretation of geometrical and dimensional tolerances[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(9-10): 896-906.
[6] Chavanne R, Anselmetti B. Functional tolerancing: Virtual material condition on complex junctions[J]. Computers in industry, 2012, 63(3): 210-221.
[7] Villeneuve F. Aide au tolérancement tridimen-sionnel: Modèle des domaines. Savoie:Université de Savoie, 2012.
[8] Hu S L, Zhang D H, Zhang Y, et al. Inspection method of blade shape based on digitized template with design tolerance constraints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2411-2418. (in Chinese) 胡述龙, 张定华, 张莹, 等. 带公差约束的数字样板叶型检测方法[J]. 航空学报, 2013, 34(10): 2411-2418.
[9] Ayadi B, Anselmetti B, Bouaziz Z, et al. Three-dimensional modelling of manufacturing tolerancing using the ascendant approach[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3): 279-290.
[10] Hu J, Wu Z T, Yang J X. Knimatix model of 3D tolerances accumulation based on screw parameter[J]. China Mechanical Engineering, 2003, 14(2): 127-130. (in Chinese) 胡洁, 吴昭同, 杨将新. 基于旋量参数的三维公差累积的运动学模型[J]. 中国机械工程, 2003, 14(2): 127-130.
[11] Wu Z Q. Simulated tolerances modeling based on small displacemeng torsors and tolerance analysis[J]. Machinery Design & Manufacture, 2010, 1(1): 205-207. (in Chinese) 吴兆强. 基于小位移旋量的公差模拟建模及公差分析[J]. 机械设计与制造, 2010, 1(1): 205-207.
[12] Zhang X T, Liu W J, Jin T G. 3D assembly tolerance-chain analysis for concurrent engineering[J]. Machine Design and Research, 2004, 20(4): 59-62. (in Chinese) 张旭堂, 刘文剑, 金天国. 面向并行工程的三维装配公差链分析[J]. 机械设计与研究, 2004, 20(4): 59-62.
[13] Xu X S, Yang J X, Cao Y L, et al. Manufacturing error modeling based on homogeneous transformation[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 1021-1026. (in Chinese) 徐旭松, 杨将新, 曹衍龙, 等. 基于齐次坐标变换的制造误差建模研究[J]. 浙江大学学报: 工学版, 2008, 42(6): 1021-1026.
[14] Zhao H J, Zheng G L, Duan L H. A geometrical method for assembly dimensional-chain analysis in digital context[J]. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(1): 104-108. (in Chinese) 赵皇进, 郑国磊, 段丽华. 数字化环境下装配尺寸链分析的几何方法[J]. 计算机辅助设计与图形学学报, 2008, 20(1): 104-108.
[15] Zheng H Y, Zheng G L, Zhao H J. Principle and application of functional diemsnion driving in 3D toelrance analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1): 138-142.(in Chinese) 郑洪涌, 郑国磊, 赵皇进. 三维公差分析中工程尺寸驱动原理与应用[J]. 北京航空航天大学学报, 2012, 38(1): 138-142.
[16] Liu F, Zheng G L, Zheng H Y. Geometric model and analysis method of form and location tolerance in digital environment//2010 2nd International Conference on Computer Engineering and Technology, 2010, 5: 328-332.
[17] Wang B, Zheng G L, Duan L H. The virtual constraint model and its application to tolerance analysis[J]. Applied Mechanics and Materials, 2013, 321-324: 925-932.
[18] Zheng H Y. Key technologies research and development of 3D tolerance analysis. Beijing: School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, 2011. (in Chinese) 郑洪涌. 三维工艺容差分析关键技术的研究与开发. 北京: 北京航空航天大学机械工程及自动化学院, 2011.
/
〈 | 〉 |