Fluid Mechanics and Flight Mechanics

A Coning Motion-based Guidance Law for Guided Rocket with Velocity Control

  • LIU Pengyun ,
  • SUN Ruisheng ,
  • LI Weiming ,
  • MING Chao
Expand
  • School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 210094, China

Received date: 2013-05-22

  Revised date: 2013-09-28

  Online published: 2013-10-28

Supported by

National Natural Science Foundation of China (11176012);Aeronautical Science Foundation of China (20110159001)

Abstract

This paper develops a novel coning motion-based guidance method for a missile with impact velocity control. First, an ideal trajectory of a virtual target is designed based on the requirement of impact velocity, and the problem of velocity control for the missile is transformed into that of tracking the virtual target. Then, the locomotion models of the guided rocket and the virtual target are formulated. Furthermore, the information of the relative position and velocity between the rocket and the virtual target is used for the formula derivation of the coning motion-based guidance law. Based on the theory of dynamic inversion, the guidance parameters and commands are designed. Finally, the new guidance method is evaluated using a simulation of the typical terminal guidance for a guided rocket with velocity control. Simulation results demonstrate that the proposed guidance law has a good performance and can be applied to the guidance of missiles with impact velocity control in different impact angle constraints, which provides some significant reference for the technology of velocity control.

Cite this article

LIU Pengyun , SUN Ruisheng , LI Weiming , MING Chao . A Coning Motion-based Guidance Law for Guided Rocket with Velocity Control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 933 -941 . DOI: 10.7527/S1000-6893.2013.0407

References

[1] Jiang Y X, Cui J. Effectiveness of weaving maneuver strategy of a missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2): 133-136. (in Chinese) 姜玉宪, 崔静. 导弹摆动式突防策略的有效性[J].北京航空航天大学学报, 2002, 28(2): 133-136.

[2] Yan X Y, Yang S X, Zhang C. Analysis of stability for coning motion of rockets based on theory of nutation movement[J]. Acta Armamentarii, 2009, 30(10): 1291-1296. (in Chinese) 闫晓勇, 杨树兴, 张成. 基于章动运动理论的火箭弹锥形运动稳定性分析[J]. 兵工学报, 2009, 30(10): 1291-1296.

[3] Mao X R, Yang S X, Xu Y. Coning motion stability of wrap around fin rockets[J]. Science in China Series E: Technological Sciences, 2007, 50(3): 343-350.

[4] Xu H J, Zhu J T, Zeng F. Three-dimensional circular guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 255-258. (in Chinese) 徐浩军, 朱建太, 曾凡. 飞机纵向摆动及飞行安全评估[J]. 航空学报, 2003, 24(3): 255-258.

[5] Zhou D, Zou X G, Sun D B. A sliding-mode guidance law for homing missiles breaking through defense with maneuver[J]. Journal of Astronautics, 2006, 27(2): 213-216. (in Chinese) 周荻, 邹昕光, 孙德波. 导弹机动突防滑模制导律[J]. 宇航学报, 2006, 27(2): 213-216.

[6] Gu W J, Zhao H C. Research on terminal nonplanar maneuver of supersonic anti-ship missile[J]. Flight Dynamics, 2003, 21(3): 36-40. (in Chinese) 顾文锦, 赵红超. 超声速反舰导弹末端非平面机动研究[J]. 飞行力学, 2003, 21(3): 36-40.

[7] Gu W J, Zhao H C, Wang F L, et al. Integrative control model of missiles terminal maneuver[J]. Journal of Astronautics, 2004, 25(6): 677-680. (in Chinese) 顾文锦, 赵红超, 王凤莲, 等. 导弹末端机动的一体化控制模型[J]. 宇航学报, 2004, 25(6): 677-680.

[8] Gu W J. An overload control of anti-ship missile[J]. Journal of Projectiles Rockets Missiles and Guidance, 2002, 22(1): 14-18. (in Chinese) 顾文锦. 反舰导弹的过载控制[J]. 弹箭与制导学报, 2002, 22(1): 14-18.

[9] Li S D, Ren X, Wu R L. Research of spiral maneuver of reentrying missile[J]. Journal of Astronautics, 2000, 21(4): 41-48. (in Chinese) 郦苏丹, 任萱, 吴瑞林. 再入弹头的螺旋机动研究[J]. 宇航学报, 2000, 21(4): 41-48.

[10] Xie Y, Liu L H, Tang G J, et al. Weaving maneuver trajectory design for hypersonic glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2174-2180. (in Chinese) 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计[J]. 航空学报, 2011, 32(12): 2174-2180.

[11] Chen W C, Nie R M, Liu J Q. Patriot PAC-3 interceptor missile terminal guidance accuracy simulation study[J]. Winged Missiles Journal, 1999, 19(7): 57-62. (in Chinese) 陈万春, 聂蓉梅, 刘佳琪. PAC-3爱国者拦截弹末制导精度仿真研究[J]. 飞航导弹. 1999, 19(7): 57-62.

[12] Zarchan P. Proportional navigation and weaving target[J]. Journal of Guidance Control and Dynamics, 1995, 18(5): 969-974.

[13] Enomoto K, Yamasakiy T, Taknoz H. A study on a velocity control system design using the dynamic inversion method//AIAA Guidance, Navigation, and Control Conference, 2010: 563-568.

[14] Bruyère L, Whitey B A, Tsourdos A. Dynamic inversion for missile lateral velocity control via polynomial eigenstructure assignment//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003: 437-443.

[15] Hu X J, Huang X M. Three-dimensional circular guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 508-519. (in Chinese) 胡锡精, 黄雪梅. 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012, 33(3): 508-519.

Outlines

/