Electronics and Control

Methods for Relative Distance and Radial Velocity Information Extraction in LFM/CW Laser Radar

  • DU Xiaoping ,
  • SONG Yishuo ,
  • ZENG Zhaoyang
Expand
  • 1. Department of Aerospace Command, Academy of Equipment, Beijing 101416, China;
    2. Graduate School, Academy of Equipment, Beijing 101416, China;
    3. Department of Photoelectric Equipment, Academy of Equipment, Beijing 101416, China

Received date: 2013-05-20

  Revised date: 2013-10-08

  Online published: 2013-10-24

Supported by

Ministry Level Project

Abstract

When using the LFM/CW laser radars, the relative motion between a target and the radar causes the Doppler effect and information output delay which may result in measurement errors. In this paper, the so-caused measurement errors are analyzed. Based on the idea of error cancellation, a new method for information extraction is presented. Simulations are performed to compare this new method with the method based on 2-dimentional FFT (2D-FFT). The results show that the new method can extract accurate relative distance information in every modulation period while the relative radial velocity information is unknown. Compared with the 2D-FFT based method, the new method decreases the errors in velocity measurement by one order of magnitude when the relative radial velocity is less than 750 m/s.

Cite this article

DU Xiaoping , SONG Yishuo , ZENG Zhaoyang . Methods for Relative Distance and Radial Velocity Information Extraction in LFM/CW Laser Radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 523 -531 . DOI: 10.7527/S1000-6893.2013.0409

References

[1] Goddard Space Flight Center. On-orbit satellite servicing study project report[R]. National Aeronautics and Space Administration, 2010.

[2] Ruel S, Luu T, Berube A. Space shuttle testing of the TriDAR 3D rendezvous and docking sensor[J]. Journal of Field Robotics, 2012, 29(4): 535-553.

[3] Sellmaier F, Spurmann J, Gully S, et al. On-orbit servicing mission: challenges and solutions for spacecraft operations[C]//AIAA SpaceOps 2010 Conference[R]. Reston: AIAA, 2010: 1-11.

[4] Miller K L, Masciarelli J, Rohrschneider R, et al. Critical advancement in telerobotic servicing vision technology[C]//AIAA Space 2010 Conference & Exposition[R]. Reston: AIAA, 2010: 1-9.

[5] Stettner R. Compact 3D flash LIDAR video cameras and applications[J]. SPIE, 2010, 7684, 768405.

[6] Dai Y J. Principles of laser radar[M]. Beijing: National Defense Industry Press, 2002: 135-139.(in Chinese) 戴永江.激光雷达原理[M]. 北京: 国防工业出版社, 2002: 135-139.

[7] Jiang X S, Chen J X. Laser radar and its applications[J]. Journal of Jiamusi University: Natural Science dition, 2000, 18(1): 93-96.(in Chinese) 姜兴山, 陈建新. 激光雷达及其应用[J]. 佳木斯大学学报: 自然科学版, 2000, 18(1): 93-96.

[8] Stann B, Giza M, Robinson D, et al. A scannerless ladar using a laser diode illuminator and FM/CW radar principles[J]. SPIE, 1999, 3707: 421-431.

[9] Zhang X Y. On the research of LFM/CW laser radar detection for moving targets[D]. Beijing: Academy of Equipment, 2009.(in Chinese) 张晓永. LFM/CW激光雷达运动目标检测技术研究[D]. 北京: 装备学院, 2009.

[10] Zeng Z Y, Zhang X Y Jia X. Measurement of linear frequency-modulated continuous-wave laser radar[J]. Laser & Optoelectronics Progress, 2011, 48(2): 80-86.(in Chinese) 曾朝阳, 张晓永, 贾鑫. 线性调频连续波激光雷达测量方法研究[J]. 激光与光电子学进展, 2011, 48(2): 80-86.

[11] Wang Q. On the reception technology of LFM/CW laser rangefinder[D]. Beijing: Academy of Equipment, 2008.(in Chinese) 王俏. LFM/CW激光测距雷达接收技术研究[D]. 北京: 装备学院, 2008.

[12] Deng B, Wang X, He Y, et al. Range-finding for chirp pulse in the fractional Fourier domain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1915-1922.(in Chinese) 邓兵, 王旭, 何友, 等. Chirp脉冲的分数阶傅里叶域测距[J]. 航空学报, 2012, 33(10): 1915-1922.

[13] Zhao J G, Zhang X Y, Zhang Z Q. A processing method of target's range and velocity information for LFM/CW lidar[J]. Radar Science and Technology, 2010, 8(3): 193-198.(in Chinese) 赵继广, 张晓永, 张智诠. LFM/CW激光雷达测量方法[J]. 雷达科学与技术, 2010, 8(3): 193-198.

[14] Stann B, Redman B C, Lawler W, et al. Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging[J]. SPIE, 2007, 6550: 655005.

[15] Redman B C, Ruff W C, Aliberti K. Direct detection laser vibrometry with an amplitude modulated ladar[J]. SPIE, 2004, 5412: 218-228.

[16] Ruff W, Aliberti K, Giza M, et al. Translational Doppler detection using direct-detect chipped amplitude-modulated laser radar[J]. Microwave and Optical Technology Letters, 2004, 43(4): 358-363.

Outlines

/