Solid Mechanics and Vehicle Conceptual Design

A Test Method of Dynamic Damping Coefficient of Micro-vibration Isolators

  • WANG Jie ,
  • ZHAO Shougen ,
  • WU Dafang ,
  • LUO Min
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. China Academy of Space Technology, Beijing 100086, China

Received date: 2013-04-17

  Revised date: 2013-10-07

  Online published: 2013-10-24

Supported by

CAST Innovation Foundation of China (CAST201208); Defense Basic Research Program (B2120110011)

Abstract

The determination of the damping coefficient is very important for vibration isolation design. For large damping viscous fluid micro-vibration isolators, this paper presents a new equivalence theory and method to measure the damping coefficient of a three-parameter isolation model. Based on the equality of mechanical impedance, an equivalent two-parameter physical system which can be easily tested is obtained from the three-parameter isolation model. The measured damping coefficient and stiffness coefficient from a self-designed test setup are input into an ADAMS simulation model, and then the equivalent damping coefficient of this simulation is compared with that directly received from a hysteretic loop test. The results show great consistency between simulation and measurement and thus prove the validity and feasibility of this method. The variation of dynamic damping coefficient with frequency is also obtained,which is difficult for traditional methods to obtain and will be valuable for the design of vibration isolation. Thus, it becomes convenient to conduct measurements of damping coefficients of micro-vibration isolators because of the simplified model. Furthermore, the method can also be applied to isolators with more parameters to measure damping coefficients.

Cite this article

WANG Jie , ZHAO Shougen , WU Dafang , LUO Min . A Test Method of Dynamic Damping Coefficient of Micro-vibration Isolators[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 454 -460 . DOI: 10.7527/S1000-6893.2013.0414

References

[1] Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798-812.

[2] Zhang Y, Xu S J. Dual-stage passive vibration isolation system of optical payloads for high resolution remote sensing satellite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1643-1654. (in Chinese) 张尧, 徐世杰. 星上光学有效载荷的两级隔振研究[J]. 航空学报, 2012, 33(9): 1643-1654.

[3] Sullivan J M, Gooding J C, Idle M K, et al. Performance testing for an active/passive vibration isolation and steering system, AIAA-1996-1210-CP[R]. Reston: AIAA, 1996.

[4] Vaillon L, Philippe C. Passive and active microvibration control for very high pointing accuracy space systems[J]. Smart Materials and Structures, 1999, 8(6): 719-728.

[5] Hyde T T, Anderson E H. Actuator with built-in viscous damping for isolation and structural control[J]. AIAA Journal, 1996, 34(1): 129-135.

[6] Boyd J, Hyde T T, Osterberg D, et al. Performance of a launch and on-orbit isolator[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2001: 433-440.

[7] Davis L P, Carter D R, Hyde T T. Second-generation hybrid D-strut[C]//Smart Structures & Materials'95. International Society for Optics and Photonics, 1995: 161-175.

[8] Davis L P, Cunningham D, Bicos A S, et al. Adaptable passive viscous damper: an adaptable D-StrutTM[C]//Proceedings of SPIE 2193, Smart Structures and Materials 1994: Passive Damping, 1994: 47-58.

[9] Davis P, Cunningham D, Harrell J. Advanced 1.5 Hz passive viscous isolation system[C]//35th AIAA SDM Conference, 1994: 1-11.

[10] Yan J K. Mechanical vibration isolation technology[M]. Shanghai: Shanghai Science and Technology Literature Publishing House, 1985: 21-60. (in Chinese) 严济宽. 机械振动隔离技术[M]. 上海: 上海科学技术文献出版社, 1985: 21-60.

[11] Dai D P. Damping vibration and noise reduction technology[M]. Xi'an: Xi'an Jiaotong University Press, 1986: 53-107. (in Chinese) 戴德沛. 阻尼减振降噪技术[M]. 西安: 西安交通大学出版社, 1986: 53-107.

[12] Anderson E, Trubert M, Fanson J, et al. Testing and application of a viscous passive damper for use in precision truss structures[C]//Proceeding of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1991: 8-10.

[13] Oh H U, Izawa K, Taniwaki S. Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation[J]. Smart Materials and Structures, 2005, 14(5): 928-933.

[14] Rittweger A, Albus J, Hornung E, et al. Passive damping devices for aerospace structures[J]. Acta Astronautica, 2002, 50(10): 597-608.

[15] Jia J H, Shen X Y, Du J Y, et al. Design and experimental research on fluid viscous dampers[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 194-198. (in Chinese) 贾九红, 沈小要, 杜俭业, 等. 粘性流体阻尼器的设计与试验[J]. 机械工程学报, 2008, 44(6): 194-198.

[16] Duan Q, Xu H. Experiments study for dynamic features of rotational silicon oil damper[J]. Chinese Journal of Applied Mechanics, 2001, 18(2): 124-127. (in Chinese) 段权, 徐晖. 旋转式硅油阻尼器动态特性实验研究[J]. 应用力学学报, 2001, 18(2): 124-127.

[17] Ciero M K. Design of a fluid elastic actuator with application to structure control[D].Cambridge, MA: Department of Aeronautics and Astronautics, Massachussetts Institude of Technology, 1993.

Outlines

/