Review

Review and Prospect on High Efficiency Profile Grinding of Nickel-based Superalloys

  • XU Jiuhua ,
  • ZHANG Zhiwei ,
  • FU Yucan
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Province Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, China

Received date: 2013-07-17

  Revised date: 2013-10-14

  Online published: 2013-10-23

Supported by

Key Project of the National Natural Science Foundation of China (51235004); Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

Abstract

The remarkable high temperature strength, significant resistance to heat and fatigue of nickel-based superalloys lead to their wide application in the turbine sections of jet engines. However, their excellent performance is also accompanied by poor cutting ability, especially in the profile machining of structural parts. This paper first reviews the application of nickel-based alloys in turbine sections and the latest development of high efficiency grinding process. Then, the limits of high efficiency profile grinding (HEPG) are analyzed and the existing solutions are reviewed. Finally, a new strategy is proposed to further develop the potential of profile grinding in nickel-based alloys.

Cite this article

XU Jiuhua , ZHANG Zhiwei , FU Yucan . Review and Prospect on High Efficiency Profile Grinding of Nickel-based Superalloys[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 351 -360 . DOI: 10.7527/S1000-6893.2013.0421

References

[1] Reed R C. The superalloys: fundamentals and applications[M]. New York: Cambridge University Press, 2006: 1-28.

[2] Li H K, Huang Q Y. Superalloy[M]. Beijing: Metallurgical Industry Press, 2000: 1-7. (in Chinese) 李汉康, 黄乾尧. 高温合金[M]. 北京: 冶金工业出版社, 2000: 1-7.

[3] Andrew C, Howes T, Pearce T. Creep feed grinding[M]. New York: Industrial Press, 1985: 1-174.

[4] Salmon S C. What is abrasive machining[J]. Manufacturing Engineering, 2010, 144(2): 64-68.

[5] Tawakoli T. High efficiency deep grinding[M]. London: Mechanical Engineering Publication Limited, 1993:1-72.

[6] Zeppenfeld C. Speed stroke grinding of γ-titanium aluminides[J]. CIRP Annals—Manufacturing Technology, 2006, 55(1): 333-338.

[7] Tso P. Study on the grinding of Inconel 718[J]. Journal of Materials Processing Technology, 1995, 55(3-4): 421-426.

[8] Johnstone L. A critical study of high efficiency deep grinding. Cranfield: School of Applied Sciences, Cranfield University, 2002.

[9] Shi Z, Malkin S. An investigation of grinding with electroplated CBN wheels[J]. CIRP Annals-Manufacturing Technology, 2003, 52(1): 267-270.

[10] Brinksmeier E, Heinzel C, Wittmann M. Friction, cooling and lubrication in grinding[J]. CIRP Annals—Manufacturing Technology, 1999, 48(2): 581-598.

[11] Ye N E, Pearce T R A. Some observations on profile wear in creep-feed grinding[J]. Wear, 1983, 92(1): 51-66.

[12] Klocke F, Brinksmeier E, Weinert K. Capability profile of hard cutting and grinding processes[J]. CIRP Annals—Manufacturing Technology, 2005, 54(2): 22-45.

[13] Besse J R, Graham D. Grinding turbine rotors has advantages[J]. Modern Machine Shop, 2009, 81(8): 90.

[14] Aspinwall D K, Soo S L, Curtis D T, et al. Profiled Superabrasive grinding wheels for the machining of a nickel based superalloy[J]. CIRP Annals—Manufacturing Technology, 2007, 56(1): 335-338.

[15] Wilk W, Tota J. Modern technology of the turbine blades removal machining[C]//Proceedings of 8 International Conference Advanced Manufacturing Operations. Sofia: DMT Product, 2007: 347-355.

[16] Klocke F. Global challenges in grinding[C]//Proceeding of 3st European Conference on Grinding. Aachen: Apprimus-Verlag, 2010: 1-15.

[17] Johns B A. Advanced machining techniques for turbine blades[J]. Industrial Lubrication and Tribology, 1984, 36(1): 4-9.

[18] Klocke F. Manufacturing processes 2: grinding, honing, lapping[M]. Berlin: Springer-Verlag, 2009: 94-98.

[19] Malkin S, Guo C. Grinding technology: theory and applications of machining with abrasives[M]. 2nd ed. New York: Industrial Press, 2008: 43-59.

[20] Oppelt P, Fischbacher M, Zeppenfeld C. Process relations and machine requirements on speed stroke grinding of turbine materials[C]//Proceeding of 1st European Conference on Grinding. Duesseldorf: VDI Verlag, 2003: 1-17.

[21] Shafto G R. Creep feed grinding: an investigation of surface grinding with high depths of out and low feed rates. Bristol: Department of Mechanical Engineering, University of Bristol, 1974.

[22] Salmon S C. Creep-feed grinding. Bristol: Department of Mechanical Engineering, University of Bristol, 1979.

[23] Parrott E. Development and application of continuous dress creep feed grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1983, 197B(4): 231-235.

[24] Guo C, Campomanes M, Mcintosh D, et al. Optimization of continuous dress creep-feed form grinding process[J]. CIRP Annals—Manufacturing Technology, 2003, 52(1): 259-262.

[25] Werner P G. Increased removal rates and improved surface integrity by creep feed grinding[C]//Proceedings of Twenty First Abrasive Engineering Society Conference. Pittsburgh: Abrasive Engineering Society, 1983: 207-215.

[26] Anon. Creep feed grinding—the answer to a production engineer's dream[J]. Production Engineer, 1979, 58(12): 20-24.

[27] Lackner R, Ray C. Service expertise-the tool for the future[C]//Proceeding of 1st European Conference on Grinding. Duesseldorf: VDI Verlag, 2003: 7-17.

[28] Werner P G. HEDG-eine neue variante des hochleistungsschleifens verbindet das hochgeschwindigkeits-und tiefschleifen[C]//Wirtschaftliche Schleifverfahren-Stand und Entwicklungstendenzen in der Schleiftechnik. Kempen: DIF, 1995: 1-39.(in Germany)

[29] Jin T, Stephenson D J, Corbett J. Burn threshold of high-carbon steel in high-efficiency deep grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(3): 357-364.

[30] Jin T, Stephenson D J. Investigation of the heat partitioning in high efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture, 2003, 43(11): 1129-1134.

[31] Jin T, Stephenson D J, Xie G Z, et al. Investigation on cooling efficiency of grinding fluids in deep grinding[J]. CIRP Annals—Manufacturing Technology, 2011, 60(1): 343-346.

[32] Bell A, Jin T, Stephenson D J. Burn threshold prediction for high efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 433-438.

[33] Rowe W B. Thermal analysis of high efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture, 2001, 41(1): 1-19.

[34] Feng B F, Zhao H H, Cai G Q, et al. Study on the single grain high-speed grinding mechanism[J]. Journal of Northeastern University: Natural Science, 2002, 23(5): 470-473. (in Chinese) 冯宝富, 赵恒华, 蔡光起, 等. 高速单颗磨粒磨削机理的研究[J]. 东北大学学报:自然科学版, 2002, 23(5): 470-473.

[35] Yang Y, Cheng X L. Current status and trends in researches on adiabatic shearing[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401-408. (in Chinese) 杨扬, 程信林. 绝热剪切的研究现状及发展趋势[J]. 中国有色金属学报, 2002, 12(3): 401-408.

[36] Rowe W B, Morgan M N, Batako A, et al. Energy and temperature analysis in grinding[C]//Proceedings of 6th International LAMDAMAP Conference and Exhibition on Laser Metrology and Machine Performance VI, 2003, 44: 3-23.

[37] Kopac J, Krajnik P. High-performance grinding—a review[J]. Journal of Materials Processing Technology, 2006, 175(1): 278-284.

[38] Saljé E, Damlos H H, Teiwes H. Problems in profile grinding—angular plunge grinding and surface grinding[J]. CIRP Annals—Manufacturing Technology, 1981, 30(1): 219-222.

[39] Chen M. Studies on profile grinding burn of difficult-to-machine materials[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 1994. (in Chinese) 陈明. 难加工材料成形磨削烧伤的研究[D]. 南京:南京航空航天大学机电学院, 1994.

[40] Chen M. Studies on profile grinding burn in the process of grinding difficult-to-machine materials[J]. Journal of Shanghai Jiaotong University, 1997, 31(9): 56-60. (in Chinese) 陈明. 难加工材料成形磨削烧伤研究[J]. 上海交通大学学报, 1997, 31(9): 56-60.

[41] Oesterle W, Li P X. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates[J]. Materials Science and Engineering, 1997, A238(2): 357-366.

[42] Ren J X, Kang R K, Shi X K. Grinding of difficult-to-cut material[M]. Beijing: National Defense Industrial Press, 1999: 139-195. (in Chinese) 任敬心, 康仁科, 史兴宽. 难加工材料的磨削[M]. 北京: 国防工业出版社, 1999: 139-195.

[43] Northeast Institute of Technology. The analyze and experimental study of creep feed grinding[J]. Jichuang, 1979(5): 8-15. (in Chinese) 东北工学院. 缓进给强力磨削过程的分析和试验研究[J]. 机床, 1979(5): 8-15.

[44] Ma K. Fundamental study on utilization of heat pipe technology to enhance heat transfer in the grinding contact zone[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) 马可. 基于热管技术的磨削弧区强化换热基础研究[D]. 南京: 南京航空航天大学机电学院, 2011.

[45] Xu H J, Fu Y C, Sun F H, et al. Fundamental studies on enhancing heat transfer in contact zone during high efficiency grinding[J]. Science in China (Series E), 2002, 45(3): 261-272.

[46] Ding W F, Xu J H, Chen Z Z, et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels[J]. Chinese Journal of Aeronautics, 2010, 23(4): 501-510.

[47] Ding W F. Research and development of monolayer brazed CBN wheels for high efficiency grinding nickel-based superalloy[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese) 丁文锋. 镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制[D]. 南京:南京航空航天大学机电学院, 2006.

[48] Webster J A, Cui C, Jr Mindek R B, et al. Grinding fluid application system design[J]. CIRP Annals—Manufacturing Technology, 1995, 44(1): 333-338.

[49] Guo C, Campomanes M, Mcintosh D, et al. Model-based monitoring and control of continuous dress creep-feed form grinding[J]. CIRP Annals—Manufacturing Technology, 2004, 53(1): 263-266.

[50] Jr Mindek R B, Howes T D. Slot and vertical face grinding of aerospace components[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(3): 620-625.

[51] Jackson M J, Davis C J, Hitchiner M P, et al. High-speed grinding with CBN grinding wheels— applications and future technology[J]. Journal of Materials Processing Technology, 2001, 110(1): 78-88.

[52] Xu X P, Yu Y Q, Xu H J. Effect of grinding temperatures on the surface integrity of a nickel-based superalloy[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 359-363.

[53] Xu X P, Huang H, Xu H J. Study on creep feed grinding of superalloy K417 for vanes used in aeronautical industry by utilizing intermittent CBN wheel[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(3): 316-323. (in Chinese) 徐西鹏, 黄辉, 徐鸿钧. 断续 CBN 砂轮缓进给磨削K417航空叶片材料的研究[J]. 航空学报, 1997, 18(3): 316-323.

[54] Ren J X, Yang M K, Li Y Q, et al. Grinding characteristic of nickel-based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(6): 755-758. (in Chinese) 任敬心, 杨茂奎, 李雅卿, 等. 镍基高温合金的磨削特征[J]. 航空学报, 1997, 18(6): 755-758.

[55] Kang R K. Yang Q F, Qi W, et al. An experimental study on creep feed grinding narrow deep groove of high temperature alloy blade with electroplated CBN wheel[J]. Aeronautical Manufacturing Technology, 1999(6): 16-23. (in Chinese) 康仁科, 杨巧凤, 齐威, 等. 电镀CBN砂轮缓进给磨削高温合金叶片窄深槽的试验研究[J]. 航空制造技术, 1999(6): 16-23.

[56] Liu Q, Chen X, Gindy N. Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(9-10): 940-951.

[57] Uhlmann E. Entwicklungsstand von hochleistungsschleifwerkzeugen mit mikrokristalliner Aluminiumoxidkoernung[C]//8 Internationales Braunschweiger Feinbearbeitungskolloquium FBK. Braunschweig: Vulkan-Verlag, 1996: 24-26. (in Germany)

[58] Shi Z, Malkin S. Wear of electroplated CBN grinding wheels[J]. ASME Journal of Manufacturing Science and Engineering, 2006, 128(1): 110-118.

[59] Guo C, Shi Z, Attia H, et al. Power and wheel wear for grinding nickel alloy with plated CBN wheels[J]. CIRP Annals—Manufacturing Technology, 2007, 56(1): 343-346.

[60] Gift F C, Misiolek W Z. Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride (CBN) grinding wheels[J]. Journal of Manufacturing Science and Engineering, 2004, 126(3): 451-459.

Outlines

/