Electronics and Control

Multiple Degradation Variables Modeling for Remaining Useful Life Estimation of Gyros Based on Copula Function

  • ZHANG Jianxun ,
  • HU Changhua ,
  • ZHOU Zhijie ,
  • SI Xiaosheng ,
  • DU Dangbo
Expand
  • Unit 302, High-Tech Institute of Xi'an, Xi'an 710025, China

Received date: 2013-07-22

  Revised date: 2013-09-13

  Online published: 2013-09-29

Supported by

National Science Fund for Distinguished Young Scholars (61025014); National Natural Science Foundation of China (61174030, 61206007, 61174030, 61374126)

Abstract

This paper proposes a model for the remaining useful life (RUL) estimation of gyros with multiple degradation variables based on the Copula function. Frist, because the different degradation variables may have different degradation paths, different models are adopted to obtain a marginal distribution of the RUL. And since the fluctuations of some degradation data increase over time, a normal stochastic process whose variance is the function of time is adopted for describing the degradation process. Then, a RUL joint distribution combining these marginal distributions is obtained based on the characteristics of the Copula function. Finally, the degradation data of gyro drift from a practical experiment are used to illustrate the feasibility and applicability of our model.

Cite this article

ZHANG Jianxun , HU Changhua , ZHOU Zhijie , SI Xiaosheng , DU Dangbo . Multiple Degradation Variables Modeling for Remaining Useful Life Estimation of Gyros Based on Copula Function[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 1111 -1121 . DOI: 10.7527/S1000-6893.2013.0391

References

[1] Vichare N M, Pecht M G. Prognostics and health management of electronics[J].IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229.

[2] Shang Y S, Li W H, Liu C J, et al. Prediction of remaining useful life for equipment with partially observed information[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 848-854. (in Chinese) 尚永爽, 李文海, 刘长捷, 等. 部分可观测信息条件下装备剩余寿命预测[J]. 航空学报, 2012, 33(5): 848-854.

[3] Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation—a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.

[4] Camci F, Chinnam R B. Health-state estimation and prognostics in machining processes[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 581-597.

[5] Carr M J, Wang W B. Modeling failure modes for residual life prediction using stochastic filtering theory[J]. IEEE Transactions on Reliability, 2010, 59(2): 346-355.

[6] Peng Y, Dong M. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 237-252.

[7] Sklar M. Fonctions de répartition à n dimensions et leurs marges[J]. Publications de l'Institut de Statistique de L'Université de Paris, 1959, 8: 229-231. (in France)

[8] Si X S, Wang W B, Chen M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2012, 226(1): 53-66.

[9] Huang Z, Li S J, Guo B. General reliability life data fit method based on mixture of gamma distributions[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 379-386. (in Chinese) 黄卓, 李苏军, 郭波. 基于混合 Gamma 分布的通用可靠性寿命数据拟合方法[J]. 航空学报, 2008, 29(2): 379-386.

[10] Sikorska J Z, Hodkiewicz M, Ma L. Prognostic modelling options for remaining useful life estimation by industry[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1803-1836.

[11] Si X S, Wang W B, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2012, 35(1-2): 219-237.

[12] Zhou X. An EM algorithm based maximum likelihood parameter estimation method for the G0 distribution[J]. Acta Electronica Sinica, 2013, 41(1): 178-184. (in Chinese) 周鑫. 基于EM算法的G0分布参数最大似然估计[J]. 电子学报, 2013, 41(1): 178-184.

[13] Gibson S, Wills A, Ninness B. Maximum-likelihood parameter estimation of bilinear systems[J]. IEEE Transactions on Automatic Control, 2005, 50(10): 1581-1596.

[14] Zhang B Q, Chen G P, Guo Q T. Solution of model validation thermal challenge problem using a Bayesian method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1202-1209. (in Chinese) 张保强, 陈国平, 郭勤涛. 模型确认热传导挑战问题求解的贝叶斯方法[J]. 航空学报, 2011, 32(7): 1202-1209.

[15] Wu C F J. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1): 95-103.

[16] Nelson R B. An introduction to Copulas[M]. New York: Springer, 2006: 9-11.

[17] Fermanian J D. Goodness-of-fit tests for copulas[J]. Journal of Multivariate Analysis, 2005, 95(1): 119-152.

[18] Elwany A, Gebraeel N. Real-time estimation of mean remaining life using sensor-based degradation models[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 051005.

[19] Gebraeel N Z, Lawley M A, Li R, et al. Residual-life distributions from component degradation signals: a Bayesian approach[J]. ⅡE Transactions, 2005, 37(6): 543-557.

[20] Wang W B. A two-stage prognosis model in condition based maintenance[J]. European Journal of Operational Research, 2007, 182(3): 1177-1187.

Outlines

/