Electronics and Control

Design of Predictive Controller for Hypersonic Vehicles Based on Disturbance Observer

  • ZHANG Tianyi ,
  • ZHOU Jun ,
  • GUO Jianguo
Expand
  • Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-01-14

  Revised date: 2013-09-13

  Online published: 2013-09-24

Supported by

National Natural Science Foundation of China (61104194); Astronautics Science and Technology Innovation Foundation (N11XW0001)

Abstract

A new kind of attitude controller based on the predictive control method is proposed for hypersonic vehicles with strong coupling characteristics and model uncertainties. Firstly, a novel predictive controller is presented according to the predictive control model combined with the dynamic model of a hypersonic vehicle and an expected reference model, a disturbance observer is designed to compensate timely for the controller and to satisfy the rolling optimization requirements. Secondly, the whole control system stability is strictly proven by Lyapunov stability theory based on the error between the observed value and the real value, and the control accuracy is determined by the predictive length. Finally, the performances and robustness are assessed through a hypersonic vehicle simulation analysis. Several simulation results all show that the predictive controller can guarantee stability and high control precision under the conditions of model parameter nominal and large-scale model parameter perturbation, and the disturbance observer can follow the tracks of the disturbance rapidly.

Cite this article

ZHANG Tianyi , ZHOU Jun , GUO Jianguo . Design of Predictive Controller for Hypersonic Vehicles Based on Disturbance Observer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(1) : 215 -222 . DOI: 10.7527/S1000-6893.2013.0390

References

[1] Yu W B, Chen W C. Guidance scheme for glide range maximization of a hypersonic vehicle, AIAA-2011-6714[R]. Reston: AIAA, 2011.

[2] Morelli E A., Derry S D., Smith M. Aerodynamic parameter estimation for the X-43A from flight data, AIAA-2005-5921[R]. Reston: AIAA, 2005.

[3] Li J, Zuo B, Duan M U, et al. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 220-232. (in Chinese) 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2): 220-232.

[4] Zhang Z H, Yang L Y, Shen G Z. Switching LPV control method in wide flight envelope for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1706-1716. (in Chinese) 张增辉, 杨凌宇, 申功璋. 高超声速飞行器大包线切换LPV控制方法[J]. 航空学报, 2012, 33(9): 1706-1716.

[5] Chen H, Liu Z Y, Xie X H. Nonlinear predictive control: the state and open problems[J]. Control and Decision, 2001, 16(4): 385-391. (in Chinese) 陈虹, 刘志远, 解小华. 非线性模型预测控制的现状与问题[J]. 控制与决策, 2001, 16(4): 385-391.

[6] Rehman O U, Fidan B, Petersen R I. Uncertainty modeling and robust minimax LQR control of hypersonic flight vehicles, AIAA-2010-8285[R]. Reston: AIAA, 2010.

[7] Garcia G A, Keshmiri S. Nonlinear model predictive controller for navigation, guidance and control of a fixed-wing UAV, AIAA-2011-6310[R]. Reston: AIAA, 2011.

[8] Kang Y, Hedrick J K. Linear tracking for a fixed-wing UAV using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1202-1210.

[9] Shao X W, Zhang J, Niu Y T. Nonlinear predictive attitude control of hypersonic vehicle[J]. Journal of Ballistics, 2009, 21(4): 42-46. (in Chinese) 邵晓巍, 张军, 牛云涛. 高超声速飞行器的非线性预测姿态控制[J]. 弹道学报, 2009, 21(4): 42-46.

[10] Fang W, Jiang C S. Adaptive variable universe fuzzy predictive control for aerospace vehicle[J]. Control and Decision, 2008, 23(12): 1373-1376. (in Chinese) 方炜, 姜长生. 空天飞行器的自适应变论域模糊预测控制[J]. 控制与决策, 2008, 23(12): 1373-1376.

[11] Fang W, Jiang C S. Nonlinear predictive control of an aerospace vehicle based on adaptive fuzzy systems[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 988-994. (in Chinese) 方炜, 姜长生. 基于自适应模糊系统的空天飞行器非线性预测控制[J]. 航空学报, 2008, 29(4): 988-994.

[12] Sun Z W, Wu S N, Li H. Variable structure attitude control of staring mode spacecraft with disturbance observer[J]. Journal of Harbin Institute of Technology, 2010, 42(9): 1374-1377. (in Chinese) 孙兆伟, 邬树楠, 李晖. 带有干扰观测器的凝视航天器姿态变结构控制[J]. 哈尔滨工业大学学报, 2010, 42(9): 1374-1377.

[13] Cheng L, Jiang C S, Du Y L. The research of SMDO based NGPC method for NSV control system[J]. Journal of Astronautics, 2010, 31(2): 423-431. (in Chinese) 程路, 姜长生, 都延丽. 基于滑模干扰观测器的近空间飞行器非线性广义预测控制[J]. 宇航学报, 2010, 31(2): 423-431.

[14] Chen W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710.

[15] Zhou F Q, Wang Y, Zhou J. Design of variable structure controller for dynamic vehicle coupling system[J]. Journal of Astronautics, 2011, 32(1): 66-71. (in Chinese) 周凤岐, 王延, 周军. 高超声速飞行器耦合系统变结构控制设计[J]. 宇航学报, 2011, 32(1): 66-71.

[16] Zhou J. The variable structure adaptive control theory and application for uncertain systems[D]. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 1993. (in Chinese) 周军. 不确定系统的变结构自适应控制理论及应用[D]. 西安: 西北工业大学航天学院, 1993.

[17] Li W L, Li J T. Uncertainty observers for uncertainty systems[J]. Control Theory and Application, 2007, 24(6): 933-935. (in Chinese) 李文林, 李均涛. 不确定系统的不确定项观测器设计[J]. 控制理论与应用, 2007, 24(6): 933-935.

Outlines

/