ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Development Status and Level of Low Emissions Combustor Technologies for Civil Aero-engine
Received date: 2013-06-14
Revised date: 2013-08-06
Online published: 2013-08-28
Supported by
BUAA Weishi Scientific Research Foundation (YWF-11-03-Q-023)
In order to provide a development outlook of low emissions combustor technologies for civil aero-engine from the viewpoint of science and technology, the pollutant emissions controlling methods from rich burn and lean burn are expounded starting from the pollutant mechanism and basic principle, and the current development status of three kinds of low emissions combustion technologies is reviewed, including rich-quench-lean (RQL), lean premixed prevaporised (LPP), and lean direct injection (LDI). And the achieved level of new generation civil aviation low emissions combustor technologies is analyzed. The twin annular premixing swirler (TAPS) combustor using lean burn technology has been applied to aero-engine engineering with airworthiness certification, and it reduces NOx emissions by 50.0%-65.8% below CAEP/6 (Committee on Aviation Environmental Protection/6), reaching an ultra-low emissions level. It demonstrates the development potential of lean burn. To achieve the super ultra-low emissions goal of better than 75.0% NOx reduction relative to CAEP/6, it needs to conduct more in-depth research on spray, mixing, flow, combustion and their unsteady interactions, using advanced tools of combustion numerical computations and optical diagnostics.
Key words: civil aviation; aero-engine; combustor; pollutant; low emissions; nitrogen oxides; rich burn; lean burn
ZHANG Chi , LIN Yuzhen , XU Huasheng , XU Quanhong . Development Status and Level of Low Emissions Combustor Technologies for Civil Aero-engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 332 -350 . DOI: 10.7527/S1000-6893.2013.0358
[1] International Civil Aviation Organization. ICAO enviromental reoport 2010-aviation and climate change[S]. Montreal: ICAO Environment Branch, 2010.
[2] Lee D S, Pitari G, Grewe V, et al. Transport impacts on atmosphere and climate: aviation[J]. Atmospheric Environment, 2010, 44(37): 4678-4734.
[3] Lee C M, Chang C, Kramer S, et al. NASA project develops next generation low-emissions combustor technologies[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
[4] Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR[C]//9th Annual International Energy Conversion Engineering Conference, 2011.
[5] International Civil Aviation Organization. International standards and recommended practices, environmental protection, Annex 16, to the convention on international civil aviation, Volume Ⅱ, aircraft engine emissions[S]. Montreal: ICAO, 2005.
[6] Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008. (in Chinese) 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.
[7] Peng Y H, Xu Q H, Zhang C, et al. Development of low emission combustor for China's large aircraft engine[C]//Academic Annual Conference of Chinese Society of Aeronautics and Astronautics: Special Topic of Power 54, 2007. (in Chinese) 彭云晖, 许全宏, 张弛, 等. 我国大飞机发动机低污染燃烧室发展考虑[C]//大型飞机关键技术高层论坛暨中国航空学会2007年年会: 动力专题54, 2007.
[8] Xu H S, Deng Y H, Ma C X. Low emission combustor technology of civil aero engine[J]. Aeronautical Science & Technology, 2012(4): 5-10. (in Chinese) 徐华胜, 邓远灏, 马存祥. 民用航空发动机低排放燃烧室技术[J]. 航空科学技术, 2012(4): 5-10.
[9] Federal Aviation Administration. Tile 14-aeronautics and space: PART 34-fuel venting and exhaust emission requirements for turbine engine powered airplanes[S][R]. Washington: FAA, 1990.
[10] Civil Aviation Administration of China. CCAR-34 regulation of turbine engine fuel exhaust and gas emissions[S]. Beijing: CAAC, 2002. (in Chinese) 中国民用航空总局. CCAR-34 涡轮发动机飞机燃油排泄和排气排出物规定[S]. 北京: 中国民用航空总局, 2002.
[11] Denney R K, Tai J C, Mavris D N. Emissions prediction for aircraft conceptual design[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.
[12] European Commission. European aeronautics: a vision for 2020, KI-34-01-827-EN-C. 2001.
[13] European Commission. Flightpath 2050 Europe's vision for aviation, KI-31-11-098-EN-C. 2011.
[14] Mongia H C. TAPS-A 4th generation propulsion combustor technology for low emissions[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003.
[15] Bulzan D, Anderson B, Wey C, et al. Gaseous and particulate emissions results of the NASA alternative aviation fuel experiment (AAFEX), ASME Paper, GT-2010-23524[R]. Glasgow, UK: ASME, 2010.
[16] Liu T, Ji J, Qi F, et al. Development of China's fundamental research in combustion[J]. Science Foundation in China, 2012(6): 325-329. (in Chinese) 刘涛, 纪军, 齐飞, 等. 我国燃烧领域的基础研究进展[J]. 中国科学基金, 2012(6): 325-329.
[17] Glassman I, Yetter R A. Combustion[M]. 4th ed. Burlington: Academic Press, 2008.
[18] Law C K. Combustion physics[M]. Cambridge: Cambridge University Press, 2006.
[19] Dooley S, Won S H, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4): 1444-1466.
[20] Blevins L G. Particulate matter emitted from aircraft engines[C]//AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years, 2003.
[21] Lefebvre A H, Ballal D R. Gas turbine combustion-alternative fuels and emissions[M]. 3rd ed. Boca Raton: CRC Press, 2010.
[22] Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part IV: swirl cup[C]//9th Annual International Energy Conversion Engineering Conference, 2011.
[23] Chang C T, Holdeman J D. Low emissions RQL flametube combustor test results, NASA/TM-2001-211107[R]. Cleveland, OH: NASA, 2001.
[24] Holdeman J D, Chang C T. Low emissions RQL flametube combustor component test results, NASA/TM-2001-210678[R]. Cleveland, OH: NASA, 2001.
[25] Koopman F S, Ols J T, Padget F C, IV, et al. RQL integrated module rig test, NASA/CR-2004-212881[R]. Cleveland, OH: NASA, 2004.
[26] Rosfjord T J, Padget F C. Experimental assessment of the emissions control potential of a rich/quench/lean combustor for high speed civil transport aircraft engines, NASA/CR-2001-210613[R]. Cleveland, OH: NASA, 2001.
[27] Li J. Analysis of rich-burn/quick-quench/lean-burn combustor technology[J]. Aeroengine, 2011, 37(2): 51-53. (in Chinese) 李杰. 富油燃烧-猝熄-贫油燃烧燃烧室技术分析[J]. 航空发动机, 2011, 37(2): 51-53.
[28] International Civil Aviation Organization. Report of the independent experts to CAEP/8 on the second NOx review & long term technology goals, CAEP/8-WP/10[S]. Montreal: ICAO, 2009.
[29] Zhao J X. Pollutant emission and development of low-emission combustion technology for civil aero engine[J]. Journal of Aerospace Power, 2008, 23(6): 986-996. (in Chinese) 赵坚行. 民用发动机污染排放及低污染燃烧技术发展趋势[J]. 航空动力学报, 2008, 23(6): 986-996.
[30] Bank R D, Schilling T. Development of an ultra-low NOx LP(P) burner, ASME Paper, GT-2004-53341. Vienna: ASME, 2004.
[31] Lin Y Z, Peng Y H, Liu G E. A preliminary study of NOx emission of staging/premixed and prevaporized lean combustion low emission combustor scheme[J]. Journal of Aerospace Power, 2003, 18(4): 492-497. (in Chinese) 林宇震, 彭云晖, 刘高恩. 分级/预混合预蒸发贫油燃烧低污染方案NOx排放初步研究[J]. 航空动力学报, 2003, 18(4): 492-497.
[32] Li F, Cheng M, Shang S T, et al. Capability compare of twin annular premixing swirler with the single annular and dual annualr combustor[J]. Journal of Aerospace Power, 2012, 27(8): 1681-1687. (in Chinese) 李锋, 程明, 尚守堂, 等. 双环预混旋流与单、双环腔燃烧室性能对比[J]. 航空动力学报, 2012, 27(8): 1681-1687.
[33] Gomez R V, Dolan B, Munday D, et al. Medium pressure emissions of a multipoint low NOx combustion system[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
[34] Smith L L, Dai Z, Lee J C, et al. Advanced combustor concepts for low emissions supersonic propulsion[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5): 051503-1-12.
[35] Timko M T, Herndon S C, de la Rosa Blanco E, et al. Combustion products of petroleum jet fuel, a Fischer-Tropsch synthetic fuel, and a biomass fatty acid methyl ester fuel for a gas turbine engine[J]. Combustion Science and Technology, 2011, 183(10): 1039-1068.
[36] Lin Y, Lin Y, Zhang C, et al. Evaluation of combustion performance of a coal-derived synthetic jet fuel, ASME Paper, GT-2012-68604[R]. Copenhagen: ASME, 2012.
[37] Rye L, Wilson C. The influence of alternative fuel composition on gas turbine ignition performance[J]. Fuel, 2012, 96: 277-283.
[38] Li Y C, Zheng G H. Review of study history and low emission combustion technology development on aero gas turbines fuelling hydrogen[J]. Journal of Aerospace Power, 2012, 27(3): 572-577. (in Chinese) 李迎春, 郑光华. 航空燃气涡轮发动机氢燃料研究历史和低污染燃烧技术发展[J]. 航空动力学报, 2012, 27(3): 572-577.
[39] Daggett D, Hadaller O, Hendricks R, et al. Alternative fuel potential impact aviation, NASA/TM-2006-214365[R]. Cleveland, OH: NASA, 2006.
[40] Maniaci D C. Relative performance of a liquid hydrogen-fueled commercial transport[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
[41] Burguburu J, Cabot G, Renou B, et al. Comparisons of the impact of reformer gas and hydrogen enrichment on flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6925-6936.
[42] Burguburu J, Cabot G, Renou B, et al. Effects of H2 enrichment on flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector[C]//Proceedings of the Combustion Institute, 2011, 33: 2927-2935.
[43] Mongia H C. On continuous NOx reduction of aero-propulsion engines[C]//48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2010.
[44] Schweitzer J K, Anderson J S, Scheugenpflug H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[C]//ⅩⅦ International Symposium on Air Breathing Engines (ISABE), 2005.
[45] McKinney R G, Sepulveda D, Sowa W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[46] Snyder T S, Stewart J F, Stoner M D, et al. Application of an advanced CFD-based analysis system to the PW6000 combustor to optimize exit temperature distribution: Part Ⅱ-comparison of predictions to full annular rig test data, ASME Paper, GT-2001-0064[R]. New Orleans: ASME, 2001.
[47] Michael F, Doug T, Richard S, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
[48] Yan Y W, Xu R, Deng Y H, et al. Flow field study for head of lean premixed prevaporized low-emission combustor[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 965-976. (in Chinese) 颜应文, 徐榕, 邓远灏, 等. 贫油预混预蒸发低污染燃烧室头部流场研究[J]. 航空学报, 2012, 33(6): 965-976.
[49] Mongia H C. GE aviation low emissions combustion technology evolution, SAE-07ATC-88[R]. 2007.
[50] Hsieh S Y, Hsiao G C C, Li S C, et al. Mixer assembly for combustor of a gas turbine engine having a plurality of counter-rotating swirlers: United States. US 7581396 B2[P]. 2009-09-01.
[51] Hsieh S Y, Hsiao G C C, Li S C, et al. Mixer assembly for combustor of a gas turbine engine having a plurality of counter-rotating swirlers: United States. US 20070028624 A1. 2007-02-08.
[52] Dhanuka S K, Temme J E, Driscoll J. Unsteady aspects of lean premixed prevaporized gas turbine combustors: flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3): 631-641.
[53] Sturgess G J, Shouse D T, Zelina J, et al. Emissions reduction technology for military gas turbines[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003.
[54] Mancini M A, Vermeersch M L, Thomsen D, et al. Method and apparatus to decrease combustor emissions: United States. US 6865889 B2[P]. 2005-05-15.
[55] Deng Y H, Yan Y W, Zhu J W, et al. Numerical study of two-phase spray combustion for lean premixed prevaporized low-emission combustor[J]. Journal of Propulsion Technology, 2013, 34(3): 353-361. (in Chinese) 邓远灏, 颜应文, 朱嘉伟, 等. LPP低污染燃烧室两相喷雾燃烧数值研究[J]. 推进技术, 2013, 34(3): 353-361.
[56] Honnet S, Seshadri K, Niemann U, et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute, 2009, 32(1): 485-492.
[57] Dhanuka S K, Temme J E, Driscoll J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901-2908.
[58] Foust M J, Mongia H C. Method and apparatus for controlling combustor emissions: United States. US 6418726 B1[P]. 2002-07-16.
[59] Li S C, Hsieh S Y, Hsiao G C C, et al. Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports: United States. US 7762073 B2[P]. 2010-07-27.
[60] Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364.
[61] Lieuwen T C. Unsteady combustor physics[M]. New York: Cambridge University Press, 2012.
[62] Gicquel L Y M, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.
[63] Li J. Technology innovations of LEAP-X[J]. Aeronautical Science & Technology, 2011(4): 12-14. (in Chinese) 李杰. LEAP-X发动机的创新性技术[J]. 航空科学技术, 2011(4): 12-14.
[64] Angelo M M D, Gallman J, Johnson V, et al.N+3 small commercial efficient and quiet transportation for year 2030-2035, NASA/CR-2010-216691[R]. 2010.
[65] Nickolaus D A, Crocker D S, Black D L, et al. Development of a lean direct fuel injector for low emission aero gas turbines, ASME Paper, GT-2002-30409[R]. Amsterdam: ASME, 2002.
[66] Tacina R, Wey C, Laing P, et al. Sector tests of a low NOx lean-direct-injection multipoint integrated module combustor concept, ASME Paper, GT-2002-30089. Amsterdam: ASME, 2002.
[67] Robert T, Mansour A, Partelow L, et al. Experimental sector and flame-tube evaluations of a multipoint integrated module concept for low emission combustors, ASME Paper, GT-2004-53263. Vienna: ASME, 2004.
[68] Lazik W, Doerr T, Bake S, et al. Development of lean-burn low-NOx combustion technology at Rolls-Royce deutschland, ASME Paper, GT-2008-51115[R]. Berlin: ASME, 2008.
[69] Heath C M, Anderson R C, Locke R J, et al. Optical characterization of a multipoint lean direct injector for gas turbine combustors: velocity and fuel drop size measurements, NASA/TM-2010-216365[R]. Cleveland, OH: NASA, 2010.
[70] Prociw A, Ryon J, Goeke J. Low NOx combustion concepts in support of the NASA environmentally responsible aircraft program, ASME Paper, GT-2012-68426[R]. Copenhagen: ASME, 2012.
[71] Liu J, Zhao J W. Development of low emission combustor for foreign civil aeroengine[J]. Aeroengine, 2012(4): 11-16. (in Chinese) 刘静, 肇俊武. 国外民用航空发动机低污染燃烧室的发展[J]. 航空发动机, 2012(4): 11-16.
[72] Crocker D S, Nickolaus D A, Smith C E. Piloted airblast lean direct fuel injector: United States. US 6272840[P]. 2001-08-14.
[73] Smith C E, Nickolaus D A. Piloted airblast lean direct fuel injector with modified air splitter: United States. US 6986255[P]. 2006-01-17.
/
〈 | 〉 |