ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of Material and Shape of Compaction Roller on the Voids and Compaction Uniformity in Fiber Placement Process
Received date: 2013-06-24
Revised date: 2013-08-19
Online published: 2013-08-23
Supported by
National High-tech Research and Development Program of China (2012AA040209); Program for New Century Excellent Talents in University (NCET-11-0419); The Fundamental Research Funds for the Central Universities(xjj20100146)
Automated fiber placement(AFP) has been used to form the large aircraft composites structure in recent years. To ensure the consistency of process in AFP, the compaction roller should be flexible to adapt to the model surface with big curvature and also press the placing prepreg uniformly. In this paper, thin film pressure sensor and ultrasonic microscope are used to measure the pressure uniformity and void distribution of compaction rollers with different elasticity modulus. Compaction roller made with high elasticity modulus material exhibited good pressure uniformity and also reduced the void content. Compared with the polythene roller, the pressure uniformity of the silastic roller is improved by 50% to 60%, and the void content is decreased by 92.1%. Based on the fact that the voids distributed mainly on both sides of the prepreg and the pressure was much smaller on both sides of the roller than that in the middle area of the roller, the shape of two sides of the compaction roller is optimized. The best dip angle of the side plane calculated by ANSYS Workbench module is 20°, the pressure uniformity is improved by 42.9%, and the void content is decreased by 51.6% further.
DUAN Yugang , YAN Xiaofeng , LI Chao , ZHANG Xiaohui . Effect of Material and Shape of Compaction Roller on the Voids and Compaction Uniformity in Fiber Placement Process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 1173 -1180 . DOI: 10.7527/S1000-6893.2013.0363
[1] Fan Y Q, Zhang L H. New development of extra large composite aircraft components application technology-advance of aircraft manufacture technology[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 534-543.(in Chinese) 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展—飞机制造技术的新跨越[J]. 航空学报, 2009, 30(3): 534-543.
[2] Chen S J. Application of composite materials in A380[J]. Hi-tech Fiber & Application, 2008, 33(4): 1-4, 24.(in Chinese) 陈绍杰. 浅谈空客A380的复合材料应用[J]. 高科技纤维与应用, 2008, 33(4): 1-4, 24.
[3] Liu S G. Development trend of advanced aircraft manufacturing technology on abroad[J]. Aeronautical Science and Technology, 2003(4): 26-29. (in Chinese) 刘善国. 国外飞机先进制造技术发展趋势[J]. 航空科学技术, 2003(4): 26-29.
[4] Zhang J B. Research on the key control and processing technology of composite automated tape placement. Nanjing:College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) 张建宝. 复合材料自动铺带控制及工艺关键技术研究. 南京: 南京航空航天大学材料科学与技术学院, 2010.
[5] Xiao L. A new era of aero-composite[J]. Aviation Maintenance & Engineering, 2007(2): 40-42. (in Chinese) 晓莉. 迎接航空复合材料新时代[J]. 航空维修与工程, 2007(2): 40-42.
[6] Cao D H. Study and motion analysis on fiber placement machine. Wuhan: School of Mechanical and Electronic Engineering, Wuhan University of Technology, 2006. (in Chinese) 曹德华. 纤维铺放机构的研究与运动分析. 武汉:武汉理工大学机电工程学院, 2006.
[7] Hao J W. Development of automation technology for composite manufacturing[J]. Aeronautical Manufacturing Technology, 2010(17): 26-29. (in Chinese) 郝建伟. 复合材料制造自动化技术发展[J]. 航空制造技术, 2010(17): 26-29.
[8] Tabakov P V, Walker M. A technique for stiffness improvement by optimization of fiber steering in composite plates[J]. Applied Composite Materials, 2010, 17(5): 453-461.
[9] Lukaszewicz D H, Ward C, Potter K D. The engineering aspects of automated prepreg layup: History, present, and future[J]. Composites Part B:Engineering, 2012, 43(3): 997-1009.
[10] Lin S. The ATL/AFP-the key machine for manufacturing of modern large airplane(A)[J]. World Manufacturing & Market, 2009 (4): 84-89. (in Chinese) 林胜. 自动铺带机/铺丝机(ATL/AFP)——现代大型飞机制造的关键设备(上)[J]. 世界制造技术与装备市场, 2009 (4): 84-89.
[11] Aized T, Shirinzadeh B. Robotic fiber placement process analysis and optimization using response surface method[J]. International Journal of Advanced Manufacturing Technology, 2011, 55 (1-4): 393-404.
[12] Khan M A, Mitschang P, Schledjewski R. Identification of some optimal parameters to achieve higher laminate quality through tape placement process[J]. Advance in Polymer Technology, 2010, 29(2): 98-111.
[13] Lamontia M. Contoured tape laying and fiber placement heads for automated fiber placement of large composite aerospace structures//34th International SAMPE Technical Conference. 2002: 934-948.
[14] Mischler P L, Tingley M C, Hoffmann K. Compaction roller for a fiber placement machine: USA, US Patent 7810539. 2010-10-12.
[15] Xiao J, Li Y, Wen L W, et al. Progress of automated placement technology for polymer composite[J]. Materials China, 2009, 28(6): 28-32.(in Chinese) 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J].中国材料进展, 2009, 28(6): 28-32.
[16] Shao Z X, Han Z Y, Li Y H, et al. Comparative study of tows increase or decrease methods for fiber placement machine[J]. Acta Aeronoutica et Astronautica Sinica, 2011, 32(1): 164-171. (in Chinese) 邵忠喜, 韩振宇, 李玥华, 等. 纤维铺放设备中丝束增减及其比较[J]. 航空学报, 2011, 32(1): 164-171.
[17] Duan Y G, Liu F F, Chen Y, et al. Effects of compaction force and heating temperature of prepreg on composit mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 149-156. (in Chinese) 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料性能的影响[J]. 复合材料学报, 2012, 29(4): 149-156.
[18] Zhang A Q, Yao Z Y. Pressure distribution and test methods for tire contact[J]. China Rubber Industry, 2001, 48(6): 368-374.(in Chinese) 张安强, 姚钟尧. 轮胎接地压力分布及其测试方法[J]. 橡胶工业, 2001, 48(6): 368-374.
[19] Lan M G. Tekscan pressure distribution measurement system[J]. Measurement & Control Technology, 2002, 21(4): 8-9, 17. (in Chinese) 兰民国. Tekscan压力分布测量系统[J]. 测控技术, 2002, 21(4): 8-9, 17.
[20] Muric-Nesic J, Compston P, Noble N, et al. Effect of low frequency vibrations on void content in composite materials[J]. Composite Part A: Applied Science and Manufacturing, 2009, 40(4): 548-551.
/
〈 | 〉 |