Material Engineering and Mechanical Manufacturing

Corrosion Behavior of 300M Steel in Three Area-to-Volume Ratio Simulated Water Environments

  • CHEN Chao ,
  • ZHU Liqun ,
  • LI Weiping ,
  • YE Xubin ,
  • LIU Jianzhong
Expand
  • 1. Key Laboratory of Advanced Aerospace Materials and Performances (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. China Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2013-06-04

  Revised date: 2013-07-09

  Online published: 2013-07-18

Abstract

The corrosion of 300M steel in gap water produced in airplane structure parts is a big problem. The influence of the area-to-volume ratio on the corrosion behavior of 300M steel in simulated water is studied by evaluating the weight loss,corrosion rate,damage degree,dissolved oxygen and pH value of the solution with Tafel test and electrochemical impedance spectrum. The results indicate that with the process of corrosion the content of dissolved oxygen is reduced while the pH value rises in all the three different area-to-volume solutions(2,5,20 mL/cm2). The greater the area-to-volume ratio is,the greater is the weight loss and corrosion rate. Tafel test and electrochemical impedance spectrum show that the corrosion resistance differences of 300M ultra-high strength steel lead to different corrosion degrees in the three different area-to-volume ratio solution environments, and the corrosion rate relationship is V20>V5>V2.

Cite this article

CHEN Chao , ZHU Liqun , LI Weiping , YE Xubin , LIU Jianzhong . Corrosion Behavior of 300M Steel in Three Area-to-Volume Ratio Simulated Water Environments[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 1149 -1156 . DOI: 10.7527/S1000-6893.2013.0336

References

[1] Mu Z T, Chen D H, Zhu Z T. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579.(in Chinese) 穆志韬, 陈定海, 朱作涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.

[2] Burns J T. Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu[J]. Corrosion Science, 2010, 52(2): 498-508.

[3] Wanhill R J H. Aircraft corrosion and fatigue damage assessment, NLR Technical Publication TP 94401 L. 1994.

[4] Liu M T, Liu J H, Zhong P. Ultra-high-strength steel corrosion resistance research progress[J]. Science & Technology review, 2010(9): 112-115.(in Chinese) 柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展[J]. 科技导报, 2010(9): 112-115.

[5] Wang Z P, Xu T J, Su J X.Research on relationship of civil aircraft cargo compartment corrosion and its influencing factors based on data model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 940-948. (in Chinese) 王志平, 徐天杰, 苏景新. 基于数据模型的某型民用飞机货舱区域腐蚀影响因素研究[J]. 航空学报, 2012, 33(5): 940-948

[6] Zhang H P, Wang C X. The development and research of 300M ultra high strength steel for aircraft landing gear[J]. Journal of Harbin University of Science and technology, 2011(16): 73-76. (in Chinese) 张慧萍, 王崇勋. 飞机起落架用300M超高强度钢发展及研究现状[J]. 哈尔滨理工大学学报, 2011(16): 73-76.

[7] Liu T Q, Li Z. The influence of two kinds of heat treatment heating medium for fatigue performance of 300M steel[J]. Failure Analysis and Prevention. 2006(3): 15-18. (in Chinese) 刘天琦, 李志. 两种热处理加热介质对300M钢疲劳性能的影响[J]. 失效分析与预防, 2006(3): 15-18.

[8] Ma Y T, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5): 997-1006.

[9] Corvo F, Minotas J, Delgado J, et al. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime[J]. Corrosion Science, 2005, 47(4): 883-892.

[10] Liu D X, Jin S. The study of stress corrosion behavior and mechanism for 300M ultra high strength coating steel[J]. Journal of Xi'an Jiaotong University, 1998, 32(6): 49-52. (in Chinese) 刘道新, 金石. 带镀层300M超高强度钢应力腐蚀行为与机理研究[J]. 西安交通大学学报, 1998, 32(6): 49-52.

[11] Graca M L A, Hoo C Y, Silva O M M. Failure analysis of a 300M steel pressure vessel[J]. Engineering Failure Analysis, 2009, 16(1): 182-186.

[12] Zhang M L, Zhu L Q, Liu H C, et al. Corrosion behavior of 300M ultra-high strength steel in simulated gap water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 954-962. (in Chinese) 张睦林, 朱立群, 刘慧丛, 等. 300M超高强度钢在模拟积水环境中的腐蚀行为[J]. 航空学报, 2013, 34(4): 954-962.

[13] Zhang D. Corrosion and corrosion control of aircraft structure[M]. Beijing: National Defense Industruy Press, 1993: 64-71. (in Chinese) 张栋. 飞机结构的腐蚀与腐蚀控制[M]. 北京: 国防工业出版社, 1993: 64-71.

[14] Liu D X. Corrosion and protection of materials[M]. Xi'an: Northwestern Polytechnical University Press, 2006: 15-17. (in Chinese) 刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006: 15-17.

[15] Xu H P, Liu H C, Zhu L Q. The influence of exposed area of high strength aluminum alloy for corrosion behavior[J]. Journal of Materials Engnieering, 2010(5): 41-46.(in Chinese) 徐火平, 刘慧丛, 朱立群. 盐水环境下高强铝合金暴露面积对腐蚀行为的影响[J]. 材料工程, 2010(5): 41-46

[16] Lodhi Z F, Mol J M C, Hovestad A, et al. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel[J]. Surface & Coatings Technology, 2009, 203(10):1415-1422.

[17] Huang Y, Liu H C, Zhu L Q, et al. Study on corrosion behavior of 30CrMnSiNi2A steels in simulated tank water environment[J]. Journal of Materials Engnieering, 2012(4): 88-93.(in Chinese) 黄颐, 刘慧丛, 朱立群, 等. 30CrMnSiNi2A钢在模拟油箱积水溶液中的腐蚀行为研究[J]. 材料工程, 2012 (4): 88-93.

[18] Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002: 106-107. (in Chinese) 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版, 2002: 106-107.

Outlines

/