ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Study of Unsteady Separation Flow Around Airfoil at High Angle of Attack Using Hybrid RANS-LES Method
Received date: 2013-03-18
Revised date: 2013-05-17
Online published: 2013-06-28
Supported by
National Natural Science Foundation of China (90916001)
A delayed detached eddy simulation (DDES) method, which is a hybrid Reynolds average Navier-Stokes-large eddy simulation (RANS-LES) method, is proposed for static and oscillating NACA 0015 airfoil flow simulations and the computational results are compared with experiment data. The vortex shedding phenomenon of the massive separation flow on the leeward of the airfoil at high angles of attack is captured by the DDES method in static simulations, while it is ignored in unsteady RANS computations. The time averaged pressure coefficients given by the SST-DDES method which is based on the original shear stress transport (SST) turbulence model agree very well with experiment data in all proposed RANS and DDES models. The unsteady aerodynamic loads hysteresis curves obtained by the DDES method in forced oscillation airfoil flow computation at high angles of attack agree with the experiment data better than the traditional unsteady RANS simulation results do, and the step jump of the drag and pitch moment coefficients at the maximum angle of attack is described accurately, while the RANS method gives the absolutely wrong trend.
LIU Zhou , YANG Yunjun , ZHOU Weijiang , GONG Anlong . Study of Unsteady Separation Flow Around Airfoil at High Angle of Attack Using Hybrid RANS-LES Method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 372 -380 . DOI: 10.7527/S1000-6893.2013.0263
[1] Spalart P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202.
[2] Strelets M K. Detached eddy simulation of massively separated flows, AIAA-2001-0879[R]. Reston: AIAA, 2001.
[3] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[4] Baurle R A, Tam C J, Edwards J R, et al. Hybrid simulation approach for cavity flows: blending, algorithm, and boundary treatment issues[J]. AIAA Journal, 2003, 41(8): 1463-1480.
[5] Sanchez-Rocha M, Kirtas M, Menon S. Zonal hybrid RANS-LES Method for static and oscillating airfoils and wings, AIAA-2006-1256[R]. Reston: AIAA, 2006.
[6] Lynch C E, Smith M J. Hybrid RANS-LES turbulence models on unstructured grids, AIAA-2008-3854[R]. Reston: AIAA, 2008.
[7] Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models, AIAA-2005-1095[R]. Reston: AIAA, 2005.
[8] Menter F R, Kuntz M, Bender R. A scale-adaptive simulation model for turbulent flow predictions, AIAA-2003-0767[R]. Reston: AIAA, 2003.
[9] Xiao Z X, Liu J, Luo K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1): 107-125.
[10] Krishnan V, Squires K D, Forsythe J R. Prediction of the flow around a circular cylinder at high Reynolds number, AIAA-2006-0901[R]. Reston: AIAA, 2006.
[11] Xiao Z X, Liu J, Huang J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136.
[12] Vatsa V N, Lockard D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications, AIAA-2010-4001[R]. Reston: AIAA, 2010.
[13] Lorenzo A, Valero E, de Pablo V. DES/DDES post-stall study with iced airfoil, AIAA-2011-1103[R]. Reston: AIAA, 2011.
[14] Deck S. Detached-eddy simulation of transonic buffet over a supercritical airfoil, AIAA-2004-5378[R]. Reston: AIAA, 2004.
[15] Morton S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J]. Journal of Aircraft, 2009, 46(3): 746-755.
[16] Bai J Q, Wang B, Sun Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. Acta Aerodynamica Sinica, 2012, 30(3): 373-379.
[17] Wang G, Ye Z Y. Study of the unsteady flow around a delta wing at high incidence using detached eddy simulation[J]. Journal of Northwestern Polytechnical University, 2008, 26(4): 413-418. (in Chinese) 王刚, 叶正寅. 运用非定常DES方法数值模拟三角翼大迎角流动[J]. 西北工业大学学报, 2008, 26(4): 413-418.
[18] Li X L, Yang Y, Zhang Q, et al. Numerical simulation of shock/vortex interaction in transonic flow around a delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 750-761. (in Chinese) 李喜乐, 杨永, 张强, 等. 绕跨声速三角翼的激波/涡干扰流场数值模拟[J]. 航空学报, 2013, 34(4): 750-761.
[19] Bai J Q, Zhang Y, Hua J. Application of filter-SST method in airfoil deep stall simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 979-987. (in Chinese) 白俊强, 张扬, 华俊. 一种滤波SST方法在翼型深失速模拟中的应用[J]. 航空学报, 2013, 34(5): 979-987.
[20] Chen L, Wu Y Z, Xia J. High Reynolds number cavity acoustic numerical simulation using DES[J]. Chinese Journal of Computational Mechanics, 2011, 28(5): 749-753. (in Chinese) 陈龙, 伍贻兆, 夏健. 基于DES的高雷诺数空腔噪声数值模拟[J]. 计算力学学报, 2011, 28(5): 749-753.
[21] Lawson S J, Barakos G N. Assessment of passive flow control for transonic cavity flow using detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(3): 1009-1029.
[22] Yuan X X, Deng X B, Xie Y F, et al. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 723-728. (in Chinese) 袁先旭, 邓小兵, 谢昱飞, 等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报, 2009, 27(6): 723-728.
[23] Gao R Z, Yan C. LES/RANS hybrid method for supersonic axisymmetric base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1095-1099. (in Chinese) 高瑞泽, 阎超. LES/RANS混合方法对超声速底部流动的应用[J]. 北京航空航天大学学报, 2011, 37(9): 1095-1099.
[24] Weiss P E, Deck S. On the control of turbulent axisymmetric separating/reattaching flows using zonal detached eddy simulation, AIAA-2010-5087[R]. Reston: AIAA, 2010.
[25] Chen J T, Zhang P H, Zhou N C, et al. Application of detached-eddy simulation based on Spalart-Allmaras turbulence model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 905-909. (in Chinese) 陈江涛, 张培红, 周乃春, 等. 基于SA湍流模型的DES方法应用[J]. 北京航空航天大学学报, 2012, 38(7): 905-909.
[26] Xiao Z X, Fu S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2): 221-230. (in Chinese) 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2): 221-230.
[27] Liu X Q, Wu Y Z. The computation of the lateral jet turbulence flow using DES method[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3): 209-213. (in Chinese) 刘学强, 伍贻兆. 用DES数值模拟具有横向喷流的紊流流场[J]. 航空学报, 2004, 25(3): 209-213.
[28] Baurle R A, Edwards J R. Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[J]. AIAA Journal, 2010, 48(3): 551-571.
[29] Sun M B, Liang J H, Wang Z G. Hybrid RANS/LES simulation for scalar transport of slot injection into a supersonic stream[J]. Chinese Quarterly of Mechanics, 2007, 28(3): 395-399. (in Chinese) 孙明波, 梁剑寒, 王振国. 超声速来流横向狭缝喷流标量输运的混合RANS/LES模拟[J]. 力学季刊, 2007, 28(3): 395-399.
[30] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoritical and Computational Fluid Dynamics, 2006, 20(3): 181-195.
[31] Spalart P R. Trends in turbulence treatments. AIAA-2000-2306[R]. Reston: AIAA, 2000.
[32] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[33] Piziali R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall, NASA TM-4632[R]. Washington, D.C.: NASA, 1994.
[34] Spalart P R. Young person's guide to detached-eddy simulation grids, NASA CR-2001-211032[R]. Washington, D.C.: NASA, 2001.
[35] Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258.
[36] Mavriplis D J. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, NASA CR-2003-212683[R]. Washington, D.C.: NASA, 2003.
[37] Venkatakrishnan V. On the accuracy of limiters and convergence to steady state solutions, AIAA-1993-0880[R]. Reston: AIAA, 1993.
[38] Krist S L, Biedron R T, Rumsey C L. CFL3D user's manual (Version 5.0), NASA TM-1998-208444[R]. Washington, D.C.: NASA, 1998.
[39] Sharov D, Nakahashi K. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations, AIAA-1997-2102[R]. Reston: AIAA, 1997.
/
〈 | 〉 |