ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Parameter Matching for Deployable Manipulator with Active-passive Composite Driver in Space Probe
Received date: 2013-04-24
Revised date: 2013-06-13
Online published: 2013-06-14
Supported by
National Natural Science Foundation of China (51375034, 50905006)
A deployable manipulator based on an active-passive composite driver is proposed to achieve a large magnification and load-weight ratio in applications of small spacecraft in space probe. The deployable manipulator helps to hold various instruments away from the spacecraft to avoid disturbance caused by the remanence of the spacecraft body and ensure measurement accuracy. First, the torque feature of the passive driver (hinged spring) is studied. Second, the mechanical features of the flexible boom such as bending, torsion, flattening and wrapping are analyzed. Then, the energy restriction conditions are deduced of the deployable velocity with payload kinematics, potential energy of the joint and the actuating torque of the active driver (an electric motor) to match the parameters of the active-passive driver and the flexible boom. Finally, the finite element method and experiment are used to validate the theoretical analysis. For the deployable manipulator based on an active-passive composite driver, the results show that with appropriate matching of the parameters unrumpled deployment and retractation of the flexible boom can be achieved, which prepares the way for mechanical design and control strategy in later work.
CHU Zhongyi , LEI Yian . Parameter Matching for Deployable Manipulator with Active-passive Composite Driver in Space Probe[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(1) : 268 -278 . DOI: 10.7527/S1000-6893.2013.0308
[1] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1):12-26.
[2] Ma X R, Yu D Y, Sun J, et al. The researching evolvement of spacecraft deployment and driving mechanism[J]. Journal of Astronautics, 2006, 27(6): 1123-1131. (in Chinese) 马兴瑞, 于登云, 孙京, 等. 空间飞行器展开与驱动机构研究进展[J]. 宇航学报, 2006, 27(6): 1123-1131.
[3] Ge D M, Chen W J, Fu G Y, et al. Buckling theoretic analysis of coilable hingeless extendible/retractable space mast[J]. Chinese Journal of Computational Mechanics, 2007, 24(5):615-619. (in Chinese) 戈冬明, 陈务军, 付功义, 等. 盘绕式空间可展折叠无铰伸展臂的屈曲分析理论研究[J]. 计算力学学报, 2007, 24(5): 615-619.
[4] Yang Y, Ding X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1257-1265. (in Chinese) 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6): 1257-1265.
[5] Hachkowski M R, Peterson L D. A comparative history of the precision of deployable spacecraft structures[J]. CU-CAS-95-22, 1995.
[6] Cong Q. ERM and its aplications in deployable antennas of satellites[J]. Spacecraft Engineering, 1996, 5(1): 105-109. (in Chinese) 从强. ERM及其在卫星天线展开机构上的应用[J]. 航天器工程, 1996, 5(1): 105-109.
[7] Block J, Straubel M, Wiedemann M. Ultralight deployable booms for solar sails and other large gossamer structures in space[J]. Acta Astronautica, 2010, 68(7): 984-992.
[8] Fernandeza J M, Lappasa V J, Daton-Lovettb A J. Completely stripped solar sail concept using bi-stable reeled composite booms[J]. Acta Astronautica, 2010, 69(1): 78-85.
[9] Hakkak F, Khoddam S. On calculation of preliminary design parameters for lenticular booms[J]. Aerospace Engineering, 2006, 221(3): 377-384.
[10] Guest S D, Pellegrino S. Analytical models for bistable cylindrical shells[J]. The Royal Society, 2006, 462(2067): 839-854.
[11] Hoffait S, Bruls O, Granville D, et al. Dynamic analysis of the self-locking phenomenon in tape-spring hinges[J]. Acta Astronautica, 2010, 66(7):1125-1132.
[12] Yao X F, Ma Y J, Yin Y J, et al. Design theory and dynamic mechanical characterization of the deployable composite tube hinge[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 633-639.
[13] Soykasap Ö. Deployment analysis of a self-deployable composite boom[J]. Composite Structures, 2008, 89(3): 374-381.
[14] Mallikarachchi H M Y C, Pellegrino S. Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J]. Journal of Spacecraft and Rockets, 2011, 48(1):187-198.
[15] Postma R W. Torque loss and stress relaxation in constant torque springs[C]//The 38th Aerospace Mechanisms Symposium. Virginia: Langley Research Center, 2006: 163-168.
[16] Shan H Z. Mechanics of materials courses[M]. Beijing: China Higer Education Press, 2004: 84-85, 201-205.(in Chinese) 单辉祖. 材料力学教程[M]. 北京: 高等教育出版社, 2004: 84-85, 201-205.
[17] Liu G. Decomposition-based friction compensation of mechanical systems[J]. Mechatronics, 2002, 12(5): 755-769.
[18] Rehnmark F, Pryor M, Carrington C. Development of a deployable nonmetallic boom for reconfigurable systems of small spacecraft[C]//The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. April 23-26, Honolulu, Hawaii, 2007: 2184-2205.
[19] Young W C, Budynas R G. Roark's formulas for stress and stress[M]. New York: McGraw-Hill Companies Inc, 2002: 766.
/
〈 | 〉 |