Electronics and Control

A Single Moving Observer Direct Position Determination Method Using Interferometer Phase Difference

  • ZHANG Min ,
  • GUO Fucheng ,
  • ZHOU Yiyu ,
  • YAO Shanfeng
Expand
  • 1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. National Defense Key Laboratory on Blind Signal Processing, Southwest Electronics and Telecommunication Technology Research Institute, Chengdu 610041, China

Received date: 2012-11-07

  Revised date: 2013-05-17

  Online published: 2013-05-27

Supported by

National Defense Key Laboratory Foundation of China (9140C860304);National High-tech Research and Development Program of China (2011AA7072043, 2011AA7072048)

Abstract

Due to the performance degradation under low SNR and complexity structures for multiple frequency bands using multi-channel phase interferometers, a novel single moving observer localization method for static ground emitter directly using interferometer ambiguous phase differences (PD) is proposed. To make use of the geometry characteristic of the PDs, a multiple bearing range parameterized Gaussian mixture filter (MB-RP-GMF) is advanced. Phase difference error is detected to get a set of initial azimuths and then the range parameterized method is used to attain Gaussian mixtures. The emitter position is then estimated by the extended Kalman filter (EKF) banks. Simulation results show this method outperforms the traditional bearing-only (BO) methods under low SNRs; one set of baselines can be adapted for the multiple frequency band sources.

Cite this article

ZHANG Min , GUO Fucheng , ZHOU Yiyu , YAO Shanfeng . A Single Moving Observer Direct Position Determination Method Using Interferometer Phase Difference[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(9) : 2185 -2193 . DOI: 10.7527/S1000-6893.2013.0260

References

[1] Sun Z K, Guo F C, Feng D W, et al. Passive location and tracking technology by single observer. Beijing: National Defense Industry Press, 2008: 1-29. (in Chinese) 孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术. 北京: 国防工业出版社, 2008: 1-29.

[2] Macphie R H. Thinned coincident arrays for the direct measurement of the principal solution in radio astronomy. IEEE Transactions on Antennas Propagation, 2003, 51(4): 788-793.

[3] Macphie R H, Tae H Y. On using the compound interferometer to obtain the power pattern of a conventional receiving array. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3356-3359.

[4] Jacobs E, Ralston E W. Ambiguity resolution in interferometry. IEEE Transactions on Aerospace and Electronic System, 1981, 17(6): 766-780.

[5] Shieh C S, Lin C T. Direction of arrival estimation based on phase differences using neural fuzzy network. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1124.

[6] Zhou Y Q, Huangfu K. Solving ambiguity problem of digitized multi-baseline interferometer under noisy circumstance. Journal on Communications, 2005, 26(8): 16-21. (in Chinese) 周亚强, 皇甫堪. 噪扰条件下数字式多基线相位干涉仪解模糊问题. 通信学报, 2005, 26(8): 16-21.

[7] Gong X Y, Yuan J Q, Su L H. A multi-pare unwrap ambiguity of interferometer array for estimation of direction of arrival. Journal of Electronics & Information Technology, 2006, 28(1): 55-59. (in Chinese) 龚享铱, 袁俊泉, 苏令华. 基于相位干涉仪阵列多组解模糊的波达角估计算法研究. 电子与信息学报, 2006, 28(1): 55-59.

[8] Li C, Liao G S, Li Y B. A DF method for the improved correlative interferometer. Journal of Xidian University, 2006, 33(3): 400-403. (in Chinese) 李淳, 廖桂生, 李艳斌. 改进的相关干涉仪测向处理方法. 西安电子科技大学学报, 2006, 33(3): 400-403.

[9] Amar A, Weiss A J. Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Transactions on Signal Processing, 2008, 56 (11): 5500-5508.

[10] Weiss A J. Direct geolocation of wideband emitters based on delay and Doppler. IEEE Transactions on Signal Processing, 2011, 59(6): 2513-2521.

[11] Yang R, Foo P H, Ng B P, et al. RF emitter geolocation using amplitude comparison with auto-calibrated relative antenna gains. IEEE Transactions on Aerospace and Electronic System, 2011, 47(3): 2098-2110.

[12] Oispuu M, Nickel U. Direct detection and position determination of multiple sources with intermittent emission. Signal Processing, 2010, 90(12): 3056-3064.

[13] Guo F C. A fixed observer passive location method based on multi-level grid search. Signal Processing, 2008, 24(6): 927-930. (in Chinese) 郭福成.基于多级网格搜索的固定单站无源定位方法.信号处理, 2008, 24(6): 927-930.

[14] Andreas A, Lu W S. Practical optimization algorithms and engineering applications. Springer, 2007: 119-140.

[15] Maskell S, Gordon N. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.

[16] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceeding of the IEEE, 2004, 92(3): 401-422.

[17] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.

[18] Ito K, Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.

[19] Zhang M, Guo F C, Zhou Y Y. A single moving observer direct position determination method using a long baseline interferometer. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 378-386. (in Chinese) 张敏, 郭福成, 周一宇. 基于单个长基线干涉仪的运动单站直接定位. 航空学报, 2013, 34(2): 378-386.

[20] Wang W, Yu Z J. Space-craft orbit determination: models and algorithms. Beijing: National Defense Industry Press, 2007: 40-51. (in Chinese) 王威, 于志坚. 航天器轨道确定——模型与算法. 北京: 国防工业出版社, 2007: 40-51.

[21] Kronhamn T. Bearings-only target motion analysis based on multihypothesis Kalman filter and adaptive ownship motion control. IEE Proceeding of Radar, Sonar and Navigation, 1998, 145(4): 247-252.

[22] Hanselmann T, Morelande M. Multiple target tracking with asynchronous bearings only measurements. 10th International Conference on Information Fusion, 2007: 1-8.

[23] Musicki D. Multi-target tracking using multiple passive bearings-only asynchronous sensors. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1151-1160.

[24] Salmond D. Mixture reduction algorithms for target tracking in clutter. SPIE Signal and Data Processing of Small Targets, 1990, 1305: 434-445.

[25] Williams J L, Maybeck P S. Cost-function-based Gaussian mixture reduction. 6th International Conference on Information Fusion, 2003: 1047-1054.

[26] Runnalls A R. Kullback-Leibler approach to Gaussian mixture reduction. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 989-999.

[27] Bilik I, Tabrikian J. MMSE-based filtering in presence of non-Gaussian system and measurement noise. IEEE Transactions on Aerospace and Electronic System, 2010, 46(3): 1153-1170.

[28] Kay S M. Fundamentals of statistical signal processing, estimation theory. Englewood Cliffs, New Jersey: Prentice-Hall, 1993: 30-36.

Outlines

/