ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic Moment Control of Flying Wing Vehicle Using Plasma Actuators
Received date: 2012-10-15
Revised date: 2013-03-23
Online published: 2013-05-07
Supported by
NUAA Fundamental Research Funds(NS2013013)
To research the flight control of a flying wing vehicle, an experimental study of the effect of plasma actuators on the vehicle's aerodynamic moment is conducted at the wind speed of 8.2 m/s, using aerodynamic measurement and particle image velocimetry (PIV). The results show that aerodynamic moment control can be realized by using different plasma actuators with different configurations on the vehicle. By changing the driving voltage, the proportional control of the aerodynamic moment is realized. A comparison of the effect of plasma actuators with that of conventional control surfaces demonstrates that the plasma actuators can have the same effect as certain deflecting angles of the control surface. The flow field measurement results show that the flow structure on the wing is changed through restraining the flow separation and controlling the position of vortex breakdown point on the wing, which eventually changes the aerodynamic moment of the vehicle. Thus, the plasma flow control technology can be considered an auxiliary control technology for traditional control surfaces. If the control efficiency is improved, it may be considered a new method for flight control in the future.
Key words: flying wing; plasma; flow control; aerodynamic force; particle image velocimetry
DU Hai , SHI Zhiwei , NI Fangyuan , CHENG Ruibin , DAI Xinxi . Aerodynamic Moment Control of Flying Wing Vehicle Using Plasma Actuators[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(9) : 2038 -2046 . DOI: 10.7527/S1000-6893.2013.0186
[1] Wu W K, Zhang B Q. Aerodynamic design of flight. Xi'an: Northwestern Polytechnical University Press, 2005: 172-173. (in Chinese) 武文康, 张彬乾. 战斗机气动布局设计.西安: 西北工业大学出版社, 2005: 172-173.
[2] Traub L W, Gilarranz J L, Rediniotis O K. Delta wing hingeless control via synthetic jet actuation. AIAA-2002-415, 2002.
[3] Moeller E B, Rediniotis O K. Hingeless flow control over a delta wing planform. AIAA-2000-117, 2000.
[4] Croke T C, Post M L. Overview of plasma actuators: concepts, optimization, and applications. AIAA-2005-563, 2005.
[5] Kimmel R L, Hayes J R, Menart J A, et al. Effect of surface plasma discharges on boundary layers at Mach 5. AIAA-2004-509, 2004.
[6] Orlov D M, Corke T C. Numerical simulation of aerodynamic plasma actuator effects. AIAA-2005-1083, 2005.
[7] Corke T C, Matlis E. Phased plasma arrays for unsteady flow control. AIAA-2000-2323, 2000.
[8] Patel M P, Sowle Z H, Corke T C, et al. Autonomous sensing and control of wing stall using a smart plasma slat. AIAA-2006-1207, 2006.
[9] Lopera J, Ng T T, Patel M P, et al. Aerodynamic control of 1303 UAV using windward surface plasma actuators on a separation ramp. AIAA-2007-636, 2007.
[10] Patel M P, Ng T T, Vasudevan S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. AIAA-2006-3495, 2006.
[11] Grundmann S, Frey M, Tropea C, et al. Unmanned aerial vehicle (UAV) with plasma actuators for separation control. AIAA-2009-698, 2009.
[12] Nelson R C, Corke T C, He C A, et al. Modification of the flow structure over a UAV wing for roll control. AIAA-2007-884, 2007.
[13] Du H, Shi Z W, Geng X, et al. The directional-lateral aerodynamic control at micro air vehicle using plasma actuators. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1781-1790. (in Chinese) 杜海, 史志伟, 耿玺, 等. 等离子体激励器对微型飞行器横航向气动力矩控制的试验研究. 航空学报, 2012, 33(10): 1781-1790.
[14] Li Y H, Wu Y, Liang H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability. Chinese Sci Bull (Chinese Ver), 2010, 55(31): 3060-3068. (in Chinese) 李应红, 吴云, 梁华, 等.提高抑制流动分离能力的等离子体冲击流动控制原理. 科学通报, 2010, 55(31): 3060-3068.
[15] Rethmel C, Little J, Weit C, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators. AIAA-2011-487, 2011.
/
〈 | 〉 |