Fluid Mechanics and Flight Mechanics

Numerical Simulation on Infrared Radiation Characteristics of Scramjet Nozzles

  • CHAI Dong ,
  • FANG Yangwang ,
  • TONG Zhongxiang ,
  • LI Jianxun
Expand
  • School of Aeronautical and Astronautical Engineering, Air Force Engineering University, Xi'an 710038, China

Received date: 2012-12-11

  Revised date: 2013-04-15

  Online published: 2013-04-24

Supported by

National Natural Science Foundation of China (61172083)

Abstract

For mastery of the infrared radiation intensity distribution in different directions of the scramjet nozzles with different structures, based on the reverse Monte Carlo (RMC) method, the influence of different structures of the scramjet nozzles on the infrared radiation characteristics in 3-5 μm wave band is researched, including a planar expansion ramp, a curved expansion ramp and a curved expansion ramp with a lateral plate, and the distribution regularities of the nozzles’ infrared radiation in different directions are analyzed. The results show that the infrared radiation of the nozzles display an obvious asymmetry in the vertical plane with the strongest infrared radiation areas in the detection range from -70° to -40°. The high-temperature region of the exhaust plume produced by the curved nozzle is in the lower position, so that its infrared radiation intensity detected from below is higher than that from the planar nozzle. The lateral plate suppresses the infrared radiation in the horizontal direction effectively through sheltering it from the nozzle walls and the high temperature core of the exhaust plume.

Cite this article

CHAI Dong , FANG Yangwang , TONG Zhongxiang , LI Jianxun . Numerical Simulation on Infrared Radiation Characteristics of Scramjet Nozzles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(10) : 2300 -2307 . DOI: 10.7527/S1000-6893.2013.0217

References

[1] Matthew M, Rainer K, Thomas J. Comparison of Mach 10 scramjet measurements from different impulse facilities. AIAA Journal, 2010, 48(8): 1647-1651.

[2] Dolvin D. Hypersonic international flight research and experimentation technology development and flight certification strategy. AIAA-2009-7228, 2009.

[3] Jackson K R, Gruber M R, Buccellato S. HIFIRE flight 2 overview and status update 2011. AIAA-2011-1825, 2011.

[4] Fan R Y, Zhang J Z, Shan Y. Effects of sheltering baffles on the infrared radiation characteristics of two-dimensional nozzles. Journal of Aerospace Power, 2011, 26(2): 343-348. (in Chinese) 范仁钰, 张靖周, 单勇. 遮挡板结构对二元喷管红外辐射特性的影响. 航空动力学报, 2011, 26(2): 343-348.

[5] Yang C Y, Zhang J Z, Shan Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1919-1926. (in Chinese) 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟. 航空学报, 2010, 31(10): 1919-1926.

[6] Ogawa H, Alazet Y, Pudsey A, et al. Full flow-path optimization of axisymmetric scramjet engines. AIAA-2011-2347, 2011.

[7] Lu X, Yue L J, Xiao Y B, et al. Design of scramjet nozzle based on streamline tracing technique. Journal of Propulsion Technology, 2011, 32(1): 91-96. (in Chinese) 卢鑫, 岳连捷, 肖雅彬, 等. 超燃冲压发动机尾喷管流线追踪设计. 推进技术, 2011, 32(1): 91-96.

[8] Huang W, Ji H H. Analysis of components infrared radiation of afterburning turbofan engine under non-afterburning condition. Journal of Aerospace Power, 2011, 26(1): 48-53. (in Chinese) 黄伟, 吉洪湖. 加力式涡扇发动机非加力状态部件红外辐射分析. 航空动力学报, 2011, 26(1): 48-53.

[9] Liu G, ERiQiTai, Zhu X J. Simulation of infrared radiation characteristics of cruise missile skin by backward Monte Carlo method. Science Technology and Engineering, 2011, 11(5): 1012-1017. (in Chinese) 刘钢, 额日其太, 朱希娟. 巡航导弹蒙皮红外辐射特性的反向蒙特卡罗法模拟. 科学技术与工程, 2011, 11(5): 1012-1017.

[10] Everson J, Nelson H F. Development and application of reverse Monte Carlo radiative transfer code for rocket plume base heating. AIAA-1993-138, 1993.

[11] Lv J W, Wang Q. Numerical calculation and analysis of infrared radiation characteristics from aircraft skin by using RMC method. Infrared and Laser Engineering, 2009, 38(2): 232-237. (in Chinese) 吕建伟, 王强. 飞行器蒙皮红外辐射特征的反向蒙特卡罗计算与分析方法. 红外与激光工程, 2009, 38(2): 232-237.

[12] Yan Z H. Experiment and simulation investigation of scramjet nozzle. Changsha: College of Aerospace and Material Engineering, National University of Defense Technology, 2005. (in Chinese) 晏至辉. 超燃冲压发动机尾喷管仿真和试验研究. 长沙: 国防科学技术大学航天与材料工程学院, 2005.

[13] Huang W, Ji H H. Computational investigation of infrared radiation characteristics of exhaust system based on BRDF. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1227-1235. (in Chinese) 黄伟, 吉洪湖. 基于BRDF的排气系统红外辐射特征计算研究. 航空学报, 2012, 33(7): 1227-1235.

[14] Ludwing C B, Malkmus W, Reardon J E, et al. Handbook of infrared radiation form combustion gases. NASA-SP-3080, 1973.

[15] Stephen J Y. Band model parameters for the 4.3-microns fundamental band of CO2 in the 100-3 000 K temperature range. AD-A021 786, 1976.

[16] Stephen J Y. Evaluation of non-isothermal band models for H2O. AD-A031 175, 1976.

[17] Tan H P, Cui G M, Ruan L M, et al. The Monte Carlo method and parallel algorithm in infrared mapping model of terrain object. Journal of Infrared and Millimeter Waves, 1998, 17(6): 417-423. (in Chinese) 谈和平, 崔国民, 阮立明, 等. 地物目标红外热像理论建模中的蒙特卡罗法与并行计算. 红外与毫米波学报, 1998, 17(6): 417-423.

Outlines

/