Fluid Mechanics and Flight Mechanics

Comprehensive Design Model of Anti-enhancer of Anti-TBM Interceptor Missile and Its Application

  • DU Zheng ,
  • WANG Chaozhi
Expand
  • School of Astronautics, Beihang University, Beijing 100191, China

Received date: 2012-10-15

  Revised date: 2013-03-18

  Online published: 2013-04-02

Abstract

In view of the deficiencies in the present design of the anti-enhancer of an anti-tactical ballistic missile (TBM) interceptor missile, a mathematical model of the optimal synthetic angle of attack in the intercept plane is proposed and a comprehensive design model of the anti-enhancer of an anti-TBM interceptor missile is built. Parameters of the anti-enhancer are taken as inputs of the model, and its available overload can be estimated and the guidance precision can be limited during the design process. The control of the optimal synthetic angle of attack is used to enhance ulteriorly the kill performance of the interceptor missile against TBM. A PAC-3 interceptor missile and a typical TBM warhead are taken as an example for simulation, and the results show that the kill probability of the PAC-3 is by average about 7% higher than before through the use of the comprehensive design model. The main parameters of the anti-enhancer of the PAC-3 are optimized with the model and the results show that the operational performance of the PAC-3 is improved significantly.

Cite this article

DU Zheng , WANG Chaozhi . Comprehensive Design Model of Anti-enhancer of Anti-TBM Interceptor Missile and Its Application[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(9) : 2029 -2037 . DOI: 10.7527/S1000-6893.2013.0177

References

[1] Xu B. "Patriot" series of surface to air missiles. Land-Based Air Defense Weapons, 2004(3): 19-24. (in Chinese) 徐斌. "爱国者"系列地空导弹. 地面防空武器, 2004(3): 19-24.

[2] Herman R D, Butler J H. Subsystems for the extended range interceptor missile. AIAA-1992-2750, 1992.

[3] Ji L C, Song G B. HTK and fragmentation in the anti-TBM system technology. Winged Missiles Journal, 2008(1): 33-36. (in Chinese) 吉礼超, 宋贵宝. 反TBM系统中HTK与破片杀伤技术比较分析. 飞航导弹, 2008(1): 33-36.

[4] Freedman A L, Gray R C. The implications of missile defense for northeast asia. Orbis, 2004, 48(2): 335-350.

[5] Mchenry M R, Levin M A. Estimating optimization hit-to-kill vehicle configurations for lethality against submunition payloads. AIAA-1998-0831, 1998.

[6] Qin R W. Impact damage probability calculation and simulation research to TBM by LE in terminal interception. Beijing: School of Astronautics, Beihang University, 2003. (in Chinese) 秦如雯. 钨杆杀伤增强器动能拦截TBM杀伤概率计算与仿真研究. 北京: 北京航空航天大学宇航学院, 2003.

[7] Ding J C, Wang C Z, Chen W C, et. al. Optimization design of ke-rod warhead in anti-TBM missile. Tactical Missile Technology, 2005(4): 7-11. (in Chinese) 丁健超, 王朝志, 陈万春, 等. 反TBM导弹动能杆战斗部优化设计. 战术导弹技术, 2005, 4: 7-11.

[8] Jin Y H, Yu B S, Kang P. Optimal research for TBM defense interceptor which object is optimum firing mass. Modern Defence Technology, 1999, 27(4): 15-24. (in Chinese) 金玉华, 于本水, 康鹏. 以发射质量最小为优化目标的反TBM拦截器优化研究. 现代防御技术,1999,27(4):15-24.

[9] Ding J C. Collision destroy effectiveness analysis for antiaircraft missiles at terminal ballistic. Beihang: School of Astronautics, Beihang University, 2005. (in Chinese) 丁健超. 防空导弹在终点弹道的碰撞拦截杀伤效能分析. 北京: 北京航空航天大学宇航学院, 2005.

[10] Meng H L, Sun X L, Liu D Z, et al. Simulation of the process of ke rod deployed by explosion and it's disperse characteristic. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 51-53. (in Chinese) 孟会林, 孙新利, 刘代志, 等. 中心式动能杆战斗部爆炸驱动杆条过程及其抛撒规律数值仿真. 弹箭与制导学报, 2005, 25(4): 51-53.

[11] Ma X Q, Han F. High-speed collision dynamics. Beijing: National Defense Industrial Press, 1998: 235-240. (in Chinese) 马晓青, 韩峰. 高速碰撞动力学. 北京:国防工业出版社,1998:235-240.

[12] Lloyd R M. Conventional warhead systems physics and engineering design. Virginia: American Institute of Aeronautics and Astronautics, 1998: 364-409.

[13] Jiang H. Analysis and reasearch of the combat effectiveness for the air defense missile intercepting ASM. Beijing: School of Astronautics, Beihang University, 2008. (in Chinese) 姜欢. 反ASM防空导弹做咱效能分析研究. 北京: 北京航空航天大学宇航学院, 2008.

[14] Zarchan P. Tactical and strategic missile guidance. Virginia: American Institute of Aeronautics and Astronautics, 1997: 507-515.

[15] Chen Y, Dong C Y, Wang Q, et al. Reaction jet and aerodynamics compound control missile autopilot design based on adaptive fuzzy sliding mode control via backstepping. Acta Aeronautica et Astronautica Sinica, 2007, 28(Z1): 1681-1685. (in Chinese) 陈宇, 董朝阳, 王青, 等. 基于自适应模糊滑模退步控制的直接力/气动力复合控制导弹自动驾驶仪设计. 航空学报, 2007, 28(增刊):1681-1685.

[16] Cao L J, Zhang S X, Liu Y N, et. al. Flight controller sesign using adaptive parameter approximation block backstepping. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2259-2267. (in Chinese) 曹立佳, 张胜修, 刘毅男, 等. 带有自适应参数近似的块控反步飞行控制器设计. 航空学报, 2011, 32(12): 2259-2267.

[17] Li T J. Effectiveness analysis for missile weapon systems. Beijing: National Defense Industrial Press, 2000: 188-210.(in Chinese) 李廷杰. 导弹武器系统的效能及其分析. 北京: 国防工业出版社, 2000: 188-210.

[18] Lin D H, Wu Q, Zhang H Z, et al. Research of oblique penetration by rod projectile. Explosion and Shock Waves, 1996, 16(2): 158-165. (in Chinese) 李大红, 吴强, 张汉钊, 等. 钨杆弹斜侵彻研究. 爆炸与冲击, 1996, 16(2): 158-165.

[19] Zhao Y J, Jing H, Huang C Q. The study on caleulating method of kill probability for the missile with the discrete rod warhead. Journal of Projectiles Rockets Missiles and Guidance, 2003, 23(2): 37-42. (in Chinese) 赵英杰, 景航, 黄长强. 离散杆式战斗部类导弹杀伤概率研究. 弹箭与制导学报, 2003, 23(2): 37-42.

[20] Wang T, Zhou J. Modeling and simulation research of PAC-3 interceptor. Journal of System Simulation, 2007, 19(20): 4642-4645. (in Chinese) 王婷, 周军. PAC-3拦截弹建模与仿真研究. 系统仿真学报, 2007, 19(20): 4642-4645.

[21] Du Z, Wang C Z. Main parameters optimization of missile based on a new optimization algorithm. 2011 Annual Symposium on Chinese Flight Mechanics. Beijing: Professional Committee of Chinese Society of Astronautics Aerodynamic and Flight Mechanics, 2011: 345-353. (in Chinese) 杜政, 王朝志. 基于新型优化算法的导弹主要参数优化设计. 2011年中国飞行力学学术年会. 北京:中国宇航学会空气动力与飞行力学专业委员会, 2011: 345-353.

Outlines

/