Effect of Al Content on Microstructure and Mechanical Properties of Hollow Cathode Plasma Sintering TiNiAl Alloys with Equal Ti/Ni Atom Ratio

  • LIU Bolu ,
  • LIU Zili ,
  • LIU Xiqin ,
  • WANG Huaitao ,
  • WANG Wenjing
Expand
  • College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-03-29

  Revised date: 2012-05-03

  Online published: 2013-03-29

Supported by

Changshu Science and Technology Development Planning Project (CC200913)

Abstract

Ti50-x/2Ni50-x/2Alx(x=0, 3, 6, 9) intermetallic compounds with equal Ti/Ni atom ratio are fabricated through hollow cathode plasma sintering process, and the effect of Al content on the microstructure and mechanical properties of the alloys is investigated. The results show that the microstructure of an alloy without Al consists chiefly of the NiTi matrix, some strengthening phase Ti2Ni, Ni3Ti and some pores; with the addition and increase of the Al content, the amount of Ti2Ni(Al) increases while that of Ni3Ti(Al) decreases and a small amount of Ni2TiAl is formed in Ti45.5Ni45.5Al9, while the amount of pores and their sizes increase. The flexural strength of the alloys increases with increasing Al content and reaches the maximum of 296.3 MPa when Al content is 6%, and then it starts to decrease as Al content further increases. The hardness of the alloys increases with increasing Al content and the hardness of Ti45.5Ni45.5Al9 reaches 295.6 HV.

Cite this article

LIU Bolu , LIU Zili , LIU Xiqin , WANG Huaitao , WANG Wenjing . Effect of Al Content on Microstructure and Mechanical Properties of Hollow Cathode Plasma Sintering TiNiAl Alloys with Equal Ti/Ni Atom Ratio[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(3) : 711 -718 . DOI: 10.7527/S1000-6893.2013.0110

References

[1] Koizumi Y, Ro Y, Nakazawa S, et al. NiTi-base intermetallic alloys strengthened by Al substitution. Materials and Engineering: A, 1997, 223(1-2): 36-41.

[2] Meng L J, Li Y, Zhao X Q, et al. The mechanical properties of intermetallic Ni50-xTi50Alx alloys (x=6, 7, 8, 9). Intermetallics, 2007, 15(5-6): 814-818.

[3] Xu H B, Meng L J, Xu J, et al. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics, 2007, 15(5-6): 778-782.

[4] Meng L J, Li Y, Zhao X Q, et al. Effect of Nb on strengthening mechanism of Ti-rich TiNiAl intermetallics. Acta Aeronautica et Astronautica Sinica, 2007, 28 (5): 1206-1209. (in Chinese) 孟令杰, 李岩, 赵新青, 等. Nb对富钛TiNiAI金属间化合物强化机制的影响. 航空学报, 2007, 28(5): 1206- 1209.

[5] Li Y, Liu Z M, Xiao L. Phase transformations and mechanical properties of NiTiAl shape memory alloys with equal Ni/Ti atom ratio. International Journal of Modern Physics B, 2010, 24(15-16): 2423-2428.

[6] Guo W M, Song P S, Wu J T, et al. Development and prospect of powder metallurgy superalloys. Powder Metallurgy Industry, 1999, 9(2): 9-16. (in Chinese) 国为民, 宋璞生, 吴剑涛, 等. 粉末高温合金的研制与展望. 粉末冶金工业, 1999, 9(2): 9-16.

[7] Duan C J, Wang Q, Wang C Z. Hollow cathode discharge plasma sintering of aluminium nitride. Journal of Inorganic Materials, 2004, 19(5): 1011-1017.(in Chinese) 段成军, 王群, 王从曾. 空心阴极等离子烧结AlN陶瓷. 无机材料学报, 2004, 19(5): 1011-1017.

[8] Brunatto S F, Kuhn I, Klein A N, et al. Sintering iron using a hollow cathode discharge. Materials Science and Engineering: A, 2002, 343(1-2): 163-169.

[9] Alves C, Hajek V, Jr, dos Santos C A. Thermal behavior of supersolidus bronze powder compacts during heating by hollow cathode discharge. Materials Science and Engineering: A, 2003, 348(1-2): 84-89.

[10] Liu X. Study of hollow cathode plasma sintering process. Nanjing: School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 2004. (in Chinese) 刘旭. 空心阴极等离子烧结工艺研究. 南京: 南京航空航天大学材料科学与技术学院, 2004.

[11] Cluff D, Corbin S F. The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics, 2010, 18(8): 1480-1490.

[12] Liu P S. Determining methods for porosity of porous materials. Titanium Industry Progress, 2005, 22(6): 35-37. (in Chinese) 刘培生. 多孔材料孔率的测定方法. 钛工业进展, 2005, 22(6): 35-37.

[13] Zhang Y G, Han Y F, Chen G L, et al. Structural intermetallics. Beijing: National Defense Industrial Press, 2001: 945. (in Chinese) 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 945.

[14] Hwang C M, Wayman C M. Compositional dependence of transformation temperature in ternary TiNiAl and TiNiFe alloys. Scripta Metallurgical, 1983, 17(3): 381-384.

[15] Yang H J, Yang G J, Cao J M, et al. Exploratory of influence factors of phase change temperature in TiNi alloys. Rare Metals Letters, 2005, 24(4): 27-29. (in Chinese) 杨宏进, 杨冠军, 曹继敏, 等. 影响TiNi合金相变温度因素的探讨. 稀有金属快报, 2005, 24(4): 27-29.

[16] Whitney M, Corbin S F, Gorbet R B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Material, 2008, 56(3): 559-570.

[17] Chen X J, Zhang L, Xia D T, et al. Thermodynamics and kinetics analysis of NiTi by combustion synthesis. Material & Heat Treatment, 2007, 36(2): 10-12, 51. (in Chinese) 陈秀娟, 张林, 夏天东, 等. 热爆反应生成 NiTi的热力学与动力学分析. 材料热处理, 2007, 36(2): 10-12, 51.

[18] Li B Y, Rong L J, Li Y Y. The influence of addition of TiH2 in elemental powder sintering porous Ni-Ti alloys. Materials Science and Engineering: A, 2000, 281(1-2): 169-175.

[19] Wang H B, Han J C, Zhang X H, et al. Reaction mechanism of continually heating Ni and Al particles. Acta Metallurgical Sinica, 1998, 34(9): 992-998. (in Chinese) 王华彬, 韩杰才, 张幸红, 等. Ni-Al粉连续加热过程中的反应机理. 金属学报, 1998, 34(9): 992-998.

[20] Wang Y H, Lin J P, He Y H, et al. Progress in reactive mechanism of Ti with Al elemental powders. Materials Review, 2007, 21(1): 83-85. (in Chinese) 王衍行, 林均品, 贺跃辉, 等. 元素粉末Ti与Al反应机理的研究进展. 材料导报, 2007, 21(1): 83-85.

[21] Brain I. Thermochemical data of pure substances. Cheng N L, Niu S T, Xu G Y, translated. Beijing: Science Press, 2003. (in Chinese) 伊赫桑·巴伦. 纯物质热化学数据手册. 程乃良, 牛四通, 徐桂英, 译. 北京: 科学出版社, 2003.

[22] Morsi K. Review: reaction synthesis processing of Ni-Al intermetallic materials. Materials Science and Engineering: A, 2001, 299(1): 1-15.

[23] Dong H X, Jiang Y, He Y H, et al. Formation of porous Ni-Al intermetallics through pressureless reaction synthesis. Journal of Alloys and Compounds, 2009, 484(1): 907-913.

[24] Hsiung L C, Sheu H H. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. Journal of Alloys and Compounds, 479(1-2): 314-325.

[25] Zhang N, Babayan Khosrovabadi P, Lindenhovius J H, et al. TiNi shape memory alloys prepared by normal sintering. Materials Science and Engineering: A, 1992, 150(2): 263-270.

[26] Dong H X, He Y H, Jiang Y, et al. Effect of Al content on porous Ni-Al alloys. Materials Science and Engineering: A, 2011, 528(13-14): 4849-4855.

[27] Lee T K, Mosunov E I, Hwang S K. Consolidation of a gamma TiAl-Mn-Mo alloy by elemental powder metallurgy. Materials Science and Engineering: A, 1997, 239-240: 540-545.

[28] Ye L L, Liu Z G, Raviprasad K, et al. Consolidation of MA amorphous NiTi powders by spark plasma sintering. Materials Science and Engineering: A, 1998, 241 (1-2): 290-293.

Outlines

/