Solid Mechanics and Vehicle Conceptual Design

Panel Splices Design and Analysis of Double Bubble Intersection in Composite Pressure Cabin

  • ZHONG Xiaodan ,
  • CHEN Puhui ,
  • LIU Liyang ,
  • WANG Jin
Expand
  • 1. Key Laboratory of Fundamental Sciences for National Defense-Advanced Design Technology of Flight Vehicles, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Shenyang Institute of Aircraft Design, Shenyang 110035, China

Received date: 2012-11-29

  Revised date: 2013-03-11

  Online published: 2013-03-19

Abstract

According to the design criteria of mechanical joints and differential pressure load, a study is performed on panel splices design of a double bubble intersection in a composite pressure cabin structure. Two different panel splices of the double bubble intersection in a composite fuselage are designed under differential pressure loads, and the transverse displacement of the panels is analyzed by a shell-beam finite element model. Then the strength of butt joint concept is checked. The load distribution of the multiple-bolted joints in the structure is first calculated by using fastener elements; then the failure strength of the panel splices is assessed by failure analysis on single-bolted joints at critical locations. The result demonstrates that the butt joint design concept can improve the transverse displacement of the panels significantly under differential pressure loads and satisfy the design requirements.

Cite this article

ZHONG Xiaodan , CHEN Puhui , LIU Liyang , WANG Jin . Panel Splices Design and Analysis of Double Bubble Intersection in Composite Pressure Cabin[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(10) : 2357 -2363 . DOI: 10.7527/S1000-6893.2013.0166

References

[1] Johnson R W, Thomson L W, Wilson R D. Study on utilization of advanced composites in fuselage structures of large transports. NASA CR-172406, 1985.

[2] Dow M B. The ACEE program and basic composites research at Langley Research Center (1975 to 1986)-summary and bibliography. NASA RP-1177, 1987.

[3] Ilcewicz L B, Smith P J, Hanson C T, et al. Advanced technology composite fuselage program overview. NASA CR-4734, 1997.

[4] Niu C Y. Airframe structural design. Beijing: Aviation Industry Press, 2008: 482-495. (in Chinese) 牛春匀. 实用飞机结构工程设计. 北京: 航空工业出版社, 2008: 482-495.

[5] Sun C, Wang X M. Typical failures analysis of aircraft structures and design improvement. Beijing: Aviation Industry Press, 2007: 164-165. (in Chinese) 孙聪, 王向明. 飞机结构典型故障分析与设计改进. 北京: 航空工业出版社, 2007: 164-165.

[6] Park H J. Bearing failure analysis of mechanically fastened joints in composite laminates. Composite Structures, 2001, 53(2): 199-211.

[7] McCarthy M A, McCarthy C T, Lawlor V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I—model development and validation. Composite Structures, 2005, 71(2): 140-158.

[8] Jiang Y P, Yue Z F. Numerical failure simulation of bolt-loaded composite laminate. Acta Material Composite Sinica, 2005, 22(4): 177-182. (in Chinese) 姜云鹏, 岳珠峰. 复合材料层合板螺栓连接失效的数值模拟. 复合材料学报, 2005, 22(4): 177-182.

[9] Zhang S, Wang D, Li Z N, et al. Numerical calculation of damage accumulation and bearing strength experimental verification for composite single bolted join. Acta Material Composite Sinica, 2006, 23(2): 163-168. (in Chinese) 张爽, 王栋, 郦正能, 等. 复合材料层合板机械连接结构累积损伤模型和挤压性能试验研究. 复合材料学报, 2006, 23(2): 163-168.

[10] Dano M L, Kamal E, Gendron G. Analysis of bolted joints in composite laminates: strains and bearing stiffness predictions. Composite Structures, 2007, 79(4): 562-570.

[11] Zhang Q L, Cao Z Q. Study on factors influencing the performance of composite bolted connections. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 755-762. (in Chinese) 张岐良, 曹增强. 复合材料螺接性能的影响因素研究. 航空学报, 2012, 33(4): 755-762.

[12] Zhao M Y, Yan G L, Gu Y L, et al. Design of computation methods of the load distribution in composite fastener group joints. Aeronautical Computing Technique, 2006, 36(3): 97-100. (in Chinese) 赵美英, 阎国良, 顾亦磊, 等. 复合材料层板钉群连接载荷分配计算方法研究. 航空计算技术, 2006, 36(3): 97-100.

[13] Gray P J, McCarthy C T. A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints. Composites: Part B, 2010, 41(4): 317-325.

[14] Zhang J K, Ma Z Y, Cheng X Q, et al. Finite element model and load distribution analysis for three-bolted single-lap composite joints. Acta Material Composite Sinica, 2012, 29(3): 179-183. (in Chinese) 张纪奎, 马志阳, 程小全, 等. 复合材料三钉单搭连接有限元模拟与钉载分布. 复合材料学报, 2012, 29(3): 179-183.

[15] Qian Y B, Zhong X D, Chen P H, et al. Longitudinal panel splice design of composite fuselage structure and failure analysis. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1427-1433. (in Chinese) 钱一彬, 钟小丹, 陈普会, 等. 复合材料机身壁板的纵向连接设计与失效分析. 航空学报, 2012, 33(8): 1427-1433.

[16] Institute of Aeronautics China. Handbook of composite structure design. Beijing: Aviation Industry Press, 2001: 147-150. (in Chinese) 中国航空研究院. 复合材料结构设计手册. 北京: 航空工业出版社, 2001: 147-150.

[17] ABAQUS/Standard version 6.10, user's manual. Rhode Island: Hibbit, Karlsson and Sorensen Inc., 2010.

[18] Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47(2): 329-335.

[19] Niu C Y. Airframe stress analysis and sizing. Beijing: Aviation Industry Press, 2009: 677-680. (in Chinese) 牛春匀. 实用飞机结构应力分析及尺寸设计. 北京: 航空工业出版社, 2009: 677-680.

Outlines

/