ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Structural Stiffness Design and Experimental Evaluation of Elastic Ring-metal Rubber Damper
Received date: 2012-07-24
Revised date: 2013-01-14
Online published: 2013-02-01
Supported by
National Natural Science Foundation of China (51101008); National Natural Science Foundation of China-Sino-British Cooperation Project (51211130115)
The elastic ring-metal rubber damper (MRD/ER) presented in this paper is a new type of oil-free rotor support structure different from the traditional squeeze film damper and proposed according to the vibration control in design criteria. The elastic ring provides its essential stiffness, the metal rubber provides part of the stiffness, and the metal rubber damping elements provide the main support damping. Both the elastic support and damping properties are achieved, making possible the optimal design of the critical speed and the vibration control of the rotor system. The linear supporting stiffness of the elastic ring-metal rubber damper is better than the traditional squeeze film damper, and it can effectively inhibit rotor vibration. Large amplitudes can be prevented by the amplitude limit convex platform to ensure system safety and reliability. An investigation on the structural design, a simulation analysis and mechanical experiments are conducted in this study. The quasi-static tests suggest that the stiffness of the damper is within the design scope and the damping property is good. The dynamic tests suggest that the dynamic stiffness and damping coefficients decrease with the increase of the excitation frequency. On a wide frequency range, the elastic ring-metal rubber possesses large damping coefficient.
Key words: elastic ring; metal rubber; structural design; vibration control; dynamic stiffness
MA Yanhong , LU Hongwei , ZHU Haixiong , HONG Jie . Structural Stiffness Design and Experimental Evaluation of Elastic Ring-metal Rubber Damper[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(6) : 1301 -1308 . DOI: 10.7527/S1000-6893.2013.0071
[1] San Andrés L, Chirathadam A T, Kim T H. Measurement of structural stiffness and damping coefficients in a metal mesh foil bearing. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 032503-7.
[2] Zhou S J, Zhao X M, Li G H. Bistable and critical speed of elastic ring-squeeze film dampers. The Fifth Session on Power, 2013. (in Chinese) 周松江, 赵行明, 李光辉. 弹性环-挤压油膜系统双稳态和临界转速. 第五届动力年会论文集, 2013.
[3] Zhang D Y, Mu G X, Hong J. Rigidity calculation methods for rotor supporting system in gas engine. Tactical Missile Technology, 2005(2): 20-23. (in Chinese) 张大义, 母国新, 洪杰. 航空发动机转子支承系统刚度计算中的几个问题. 战术导弹技术, 2005(2): 20-23.
[4] Yu T B, Jiang Z, Gong Y D, et al. Experiment of squeeze film damper for deep hole machining. Journal of Northeastern University: Natural Science, 2002, 23(6): 577-580.
[5] Zhang R H, Jiang H Y, Xia Y H, et al. Research on stiffness of squeeze film damper with metal rubber. Journal of Hunan University of Science & Technology: Natural Science Edition, 2009, 24(1): 28-31. (in Chinese) 张蕊华, 姜洪源, 夏宇宏, 等. 金属橡胶挤压油膜阻尼器刚度分析. 湖南科技大学学报: 自然科学版, 2009, 24(1): 28-31.
[6] Jiang H Y, Zhang R H, Zhao K D, et al. Analysis of damping characteristics of squeeze film damper with metal rubber. Journal of Propulsion Technology, 2005, 26(4): 174-177. (in Chinese) 姜洪源, 张蕊华, 赵克定, 等. 金属橡胶挤压油膜阻尼器阻尼性能分析. 推进技术, 2005, 26(4): 174-177.
[7] Ma Y H, Hong J, Zhao F A. Theoretical investigation of vibration attenuation mechanism of an adaptive squeeze film damper. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(1): 5-8. (in Chinese) 马艳红, 洪杰, 赵福安.自适应挤压油膜阻尼器减振机理理论研究. 北京航空航天大学学报, 2004, 30(1): 5-8.
[8] Long X Y, Hong J, Zhang D Y, et al. Study of the methods for analyzing the rigidity and strength of an elastic ring and its mechanics characteristics. Journal of Engineering for Thermal Energy & Power, 2010, 25(2): 145-149. (in Chinese) 龙向阳, 洪杰, 张大义, 等. 弹性环刚度强度的分析方法与力学特性研究.热能动力工程, 2010, 25(2): 145-149.
[9] Чегодаев ДЕ, Мулюкин ОП, Колтыин БВ, et al. Design of metal rubber components. Li Z Y, translated. Beijing: National Defence Industry Press, 2000. (in Chinese) Чегодаев ДЕ, Мулюкин ОП, Колтыин БВ, 等. 金属橡胶构件的设计. 李中郢, 译. 北京:国防工业出版社, 2000.
[10] Zhu B, Ma Y H, Zhang D Y, et al. A constitutive model of metal rubber based on hysteresis property. Acta Physica Sinica, 2012, 61(7): 474-481. (in Chinese) 朱彬, 马艳红, 张大义,等. 金属橡胶迟滞特性本构模型研究. 物理学报, 2012, 61(7): 474-481.
[11] Hashish E, Sankar T S. Finite element and modal analyses of rotor bearing systems under stochastic loading conditions. Journal of Vibration and Acoustics, 1984, 106(1): 80-90.
[12] Hong J, Liu B L, Zhang D Y, et al. Research on the shape memory effect and thermal elasticity of a novel intellectual damping material. Acta Physica Sinica, 2012, 61(16): 466-474. (in Chinese) 洪杰, 刘宝龙, 张大义, 等. 具有形状记忆效应的新型智能阻尼材料及其热弹性力学性能研究. 物理学报, 2012, 61(16): 466-474.
[13] Sabin S. Understanding and using dynamic stiffness—a tutorial. Orbit, 2000(2): 44-54.
[14] Jin J, Zhang Z S, Xiong X. Dynamic stiffness calculation method for rubber ring isolator. Torpedo Technology, 2012(2): 125-128. (in Chinese) 金晶, 张振山, 熊鑫. 一种橡胶隔振圈动感度计算方法. 鱼类技术, 2012(2): 125-128.
[15] Song L, Teng H Y. Centrifuge dynamic stiffness of rubber spring for experimental study. Coal Mine Machinery, 2012, 33(5): 51-52. (in Chinese) 宋亮, 滕海燕. 离心机用橡胶弹簧的动刚度试验研究.煤矿机械, 2012, 33(5): 51-52.
[16] Su G Y, Sun Z L, Liu G, et al. The verification methods on displacement of high-frequency dynamic stiffness test of elastic ring. Special Purpose Rubber Products, 2012, 33(1): 60-62. (in Chinese) 宿国英, 孙照亮, 刘刚, 等. 弹性体高频动刚度试验的位移验证方法. 特种橡胶制品, 2012, 33(1): 60-62.
/
〈 | 〉 |