ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aeroacoustic Noise Prediction Using Hybrid RANS/LES Method and FW-H Equation
Received date: 2012-09-24
Revised date: 2013-01-09
Online published: 2013-01-29
Supported by
National High-tech Research and Development Program of China (2012AA051301)
The computational aeroacoustic result of aerodynamic noise problems is highly dependent on the capturing accuracy of an unsteady flow in the numerical prediction of aerodynamic noise. As a benchmark for airframe noise computation, the noise prediction for tandem cylinders is performed in this paper. The flow around the cylinders is simulated using the limited numerical scale (LNS) method based on a nonlinear k-ε model. The aerodynamic results and flow features obtained from the simulation are analyzed and compared with the experimental results. The flow parameters on the sound source surface are also recorded as the preparation data and then are combined with the acoustic analogy based on the FW-H (Ffowcs Williams-Hawkings) equation to predict the aerodynamic noise at the far-field receiver points. Since the spans in the simulation are relatively short, the predicted results have to be corrected for the span length. The final acoustic results are in good agreement with the experimental data, which indicates that the present numerical method is valid for this kind of aerodynamic noise problems.
YU Lei , SONG Wenping , HAN Zhonghua , YAN Li . Aeroacoustic Noise Prediction Using Hybrid RANS/LES Method and FW-H Equation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(8) : 1795 -1805 . DOI: 10.7527/S1000-6893.2013.0067
[1] Lockard D P. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop. AIAA-2011-353, 2011.
[2] Lockard D P, Khorrami M R, Choudhari M M, et al. Tandem cylinder noise predictions. AIAA-2007-3450, 2007.
[3] Jenkins L N, Khorrami M R, Choudhari M M, et al. Characterization of unsteady flow structures around tandem cylinders for component interaction studies in airframe noise. AIAA-2005-2812, 2005.
[4] Jenkins L N, Neuhart D H, Mcginley C B, et al. Measurements of unsteady wake interference between tandem cylinders. AIAA-2006-3202, 2006.
[5] Hutcheson F V, Brooks T F. Noise radiation from single and multiple rod configurations. AIAA-2006-2629, 2006.
[6] Farassat F, Casper J H. Towards an airframe noise prediction methodology: survey of current approaches. AIAA-2006-210, 2006.
[7] Liu M, Liu F, Hu Y T, et al. Aerodynamics and aeroacoustics numerical simulation of flow past two circular cylinders in tandem arrangements. Journal of Engineering Thermophysics, 2008, 29(3): 403-406. (in Chinese) 刘敏, 刘飞, 胡亚涛, 等. 三维串列双圆柱绕流气动流场及声场模拟. 工程热物理学报, 2008, 29(3): 403-406.
[8] Liu M, Wu K Q. The aero-acoustics simulation of flow around a cylinder using unstructured CE/SE scheme. Journal of Engineering Thermophysics, 2009, 30(2): 227-229. (in Chinese) 刘敏, 吴克启. 基于非结构网格CE/SE算法圆柱绕流气动声场模拟. 工程热物理学报, 2009, 30(2): 227-229.
[9] Zhao L J, Yang N Q, Wu D, et al. Aeroacoustics numerical simulation of flow past tow-dimensional two circular cylinders in tandem arrangements. Journal of Chongqing University, 2009, 32(8): 943-949. (in Chinese) 赵良举, 杨南奇, 吴朵, 等. 横掠二维串列双圆柱绕流气动噪声的数值模拟. 重庆大学学报, 2009, 32(8): 943-949.
[10] Tang K F, Franke J. Numerical simulation of noise induced by flow around cylinder using the hybrid method with the solutions of NS equation and FW-H integration. Chinese Journal of Hydrodynamics, 2009, 24(2): 190-199. (in Chinese) 唐科范, Franke J. 用解NS方程和FW-H积分的混合方法计算圆柱绕流噪声. 水动力学研究与进展A辑, 2009, 24(2): 190-199.
[11] Fei B L, Zheng T H, Yang J L. Numerical simulation of flow over two tandem cylinders. Journal of Southwest University for Nationalities. Natural Science Edition, 2007, 33(2): 376-380. (in Chinese) 费宝玲, 郑庭辉, 杨骏六. 数值分析串列双圆柱绕流. 西南民族大学学报. 自然科学版, 2007, 33(2): 376-380.
[12] Yu L, Song W P. Application of hybrid method for aerodynamic noise prediction. The Sixth Intermational Conference on Fluid Mechanics, 2011: 375-378.
[13] Lin D K, Li X D, Hu F Q. Perfectly matched layer boundary conditions using in DNS of flow around cylinder. Journal of Engineering Thermophysics, 2010, 31(5): 757-760. (in Chinese) 林大楷, 李晓东, 胡方强. 完全耦合层边界条件在圆柱绕流DNS中的应用. 工程热物理学报, 2010, 31(5): 757-760.
[14] Zhang Z S, Cui G X, Xu C X. Theory and application of large eddy numerical simulation for turbulence. Beijing: Tsinghua University Press, 2008: 263. (in Chinese) 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用. 北京: 清华大学出版社, 2008: 263.
[15] Quéméré P, Sagaut P. Zonal multi-domain RANS/LES simulations of turbulent flows. International Journal for Numerical Methods in Fluids, 2002, 40(7): 903-925.
[16] Labourasse E, Sagaut P. Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. Journal of Computational Physics, 2002, 182(1): 301-336.
[17] Batten P, Goldberg U, Chakravarthy S. Sub-grid turbulence modeling for unsteady flow with acoustic resonance. AIAA-2000-473, 2000.
[18] Batten P, Goldberg U, Chakravarthy S. Reconstructed sub-grid methods for acoustics predictions at all Reynolds numbers. AIAA-2002-2511, 2002.
[19] Batten P, Ribaldone E, Casella M, et al. Towards a generalized non-linear acoustics solver. AIAA-2004-3001, 2004.
[20] Han Z H, Song W P, Qiao Z D. Aeroacoustic calculation for helicopter rotor in hover and in forward flight based on FW-H equation. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 400-404. (in Chinese) 韩忠华, 宋文萍, 乔志德. 基于FW-H方程的旋翼气动声学计算研究. 航空学报, 2003, 24(5): 400-404.
[21] Speziale C G. Computing non-equilibrium turbulent flows with time-dependent RANS and VLES. Lecture Notes in Physics, 1997, 490: 123-129.
[22] Wagner C A, Hüttl T, Sagaut P. Large-eddy simulation for acoustics. London: Cambridge University Press, 2007: 441.
[23] Ffowcs Williams J E, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342.
[24] Yu L, Song W P, Yan L. An effective method for predicting aerodynamic noise for wind turbine flatback airfoils. Journal of Northwestern Polytechnical University, 2012, 30(4): 513-517. (in Chinese) 余雷, 宋文萍, 闫利. 平底后缘风力机翼型气动噪声计算研究. 西北工业大学学报, 2012, 30(4): 513-517.
[25] Kato C, Iida A, Takano Y, et al. Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake. AIAA-1993-145, 1993.
[26] Bres G A, Wessels M, Noelting S. Tandem cylinder noise predictions using lattice Boltzmann and Ffowcs Williams-Hawkings methods. AIAA-2010-3791, 2010.
/
〈 | 〉 |