ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Blind Speed Side Lobe Suppression in Radon-Fourier Transform Based on MIMO Radar with Multi-carrier Frequency
Received date: 2012-08-09
Revised date: 2013-01-21
Online published: 2013-01-28
Supported by
National Natural Science Foundation of China (61271391, 61225005); Beijing Municipal Natural Science Foundation (4122038); China Ministry Research Foundation (9140A07021012JW0101); Aerospace Innovation Foundation (CASC201104); Aerospace Supporting Foundation; Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
Blind speed side lobe (BSSL) in the long time coherent integration method of Radon-Fourier transform (RFT) can not only increase false alarm probability but also deteriorate radar detection performance. To address the BSSL problem, this paper proposes a novel BSSL suppression method based on the multi-carrier frequency design of a multiple input multiple output (MIMO) radar. First, based on the relationship between the carrier frequency and the distribution of BSSL, the non-overlapping constraint of BSSL is derived. Then, the multi-carrier frequency design method is provided in detail according to the constraint. By using the designed carrier frequencies, two RFT outputs with non-overlapping BSSL can be obtained. By jointly processing the RFT outputs, BSSL suppression can be realized. Furthermore, an evaluation method of the BSSL suppression is also provided. Both theoretical analysis and numerical experiments show that the proposed method can effectively suppress BSSL without deteriorating the integration performance of the RFT.
QIAN Lichang , XU Jia , SUN Wenfeng , PENG Yingning . Blind Speed Side Lobe Suppression in Radon-Fourier Transform Based on MIMO Radar with Multi-carrier Frequency[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(5) : 1181 -1190 . DOI: 10.7527/S1000-6893.2013.0073
[1] Li C. Study on MIMO radar signal detection and long-time coherent integration. Chengdu: School of Electronic Engineering, University of Electronic Science and Technology of China, 2011. (in Chinese) 李超. MIMO雷达信号检测与长时间积累技术研究. 成都: 电子科技大学电子工程学院, 2011.
[2] Lv H. Research on colocated MIMO radar signal processing. Xi'an: National Lab. of Radar Signal Processing, Xidian University, 2011. (in Chinese) 吕晖. 集中式MIMO雷达信号处理方法研究. 西安: 西安电子科技大学雷达信号处理国家重点实验室, 2011.
[3] Jin M. Study on waveform optimization and signal processing for MIMO radars. Xi'an: National Lab. of Radar Signal Processing, Xidian University, 2010. (in Chinese) 金明. MIMO雷达波形优化与信号处理方法研究. 西安: 西安电子科技大学雷达信号处理国家重点实验室, 2010.
[4] Wang W Q. Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094-3104.
[5] Zhang S S, Zeng T, Long T, et al. Dim target detection based on Keystone transformation. IEEE International Radar Conference, 2005.
[6] Wang J, Zhang S H. Study on the motion compensation of range migration for weak moving target detection. Acta Electronica Sinica, 2008, 28(12): 55-59. (in Chinese) 王俊, 张守宏. 微弱目标积累检测的包络移动补偿方法. 电子学报, 2000, 28(12): 55-59.
[7] Chen Y Z, Zhu Y F, Zhao H Z, et al. Detection algorithm research of high velocity moving target based on the envelope interpolation. Signal Processing, 2004, 20(4): 387-390. (in Chinese) 陈远征, 朱永锋, 赵宏钟, 等. 基于包络插值移位补偿的高速运动目标积累检测算法研究. 信号处理, 2004, 20(4): 387-390.
[8] Zeng J K, He Z H, Sellathurai M, et al. Modified hough transform for searching radar detection. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 683-686.
[9] Perry R P, Dipietro R C, Fante R L. Coherent integration with range migration using Keystone formatting. Proceedings of IEEE Radar Conference, 2007.
[10] Zeng T, Long T, Wang Z. Range migration compensation and Doppler ambiguity resolution by Keystone transform. IEEE International Radar Conference, 2006.
[11] Yu J, Xu J, Tang J, et al. An improved Keystone-transform based method for long-time coherent integration of radar target. Radar Science and Technology, 2008, 6(6): 455-458. (in Chinese) 余吉, 许稼, 汤俊, 等. 基于Keystone变换的改进雷达目标长时间积累. 雷达科学与技术, 2008, 6(6): 455-458.
[12] Xu J, Yu J, Peng Y N, et al. Long-time coherent integration for radar target detection base on radon-Fourier transform. IEEE International Radar Conference, 2010.
[13] Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform for radar target detection (I): generalized Doppler filter bank. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186-1202.
[14] Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform (RFT) for radar target detection (Ⅱ): performance analysis and sidelobe suppression. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473-2489.
[15] Yu J, Xu J, Peng Y N, et al. Radon-Fourier transform (RFT) for radar target detection (Ⅲ): optimality and fast implementations. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991-1004.
[16] Yu J, Xu J, Peng Y N. Long-time coherent integration method for targets with a radial acceleration. Journal of Tsinghua University: Science and Technology, 2010, 50(5): 793-796. (in Chinese) 余吉, 许稼, 彭应宁. 径向匀加速目标的长时间相参积累方法. 清华大学学报: 自然科学版, 2010, 50(5): 793-796.
[17] Zhou W G, Wang J M, Xie J L, et al. A study on compensation method of the aperture fill time. Modern Radar, 2011, 33(1): 41-45. (in Chinese) 周伟光, 王建明, 谢纪岭, 等. 一种孔径渡越时间补偿方法研究. 现代雷达, 2011, 33(1): 41-45.
[18] Qiu G F, Zhu L. Research on aperture fill phenomena of wideband phased array radar. Journal of China Academy of Electronics and Information Technology, 2010, 15(4): 354-360. (in Chinese) 仇光锋, 朱力. 宽带相控阵雷达孔径渡越现象研究. 中国电子科学研究院学报, 2010, 15(4): 354-360.
[19] Richards M A. Fundamentals of radar signal processing. New York: Tata McGraw-Hill Education, 2005: 53-120.
/
〈 | 〉 |