Electronics and Control

Elastic Net Sparse Coding-based Space Object Recognition

  • SHI Jun ,
  • JIANG Zhiguo ,
  • FENG Hao ,
  • ZHANG Haopeng ,
  • MENG Gang
Expand
  • 1. School of Astronautics, Beihang University, Beijing 100191, China;
    2. Beijing Key Laboratory of Digital Media, Beijing 100191, China;
    3. Beijing Institute of Remote Sensing Information, Beijing 100191, China

Received date: 2012-06-11

  Revised date: 2012-12-19

  Online published: 2013-01-09

Supported by

National Natural Science Foundation of China (61071137, 61071138, 61027004); National Basic Research Program of China (2010CB327900)

Abstract

The traditional bag-of-features (BoF) model for object recognition assumes each local feature point is related to only one visual word. Besides, sparse coding with l1-norm constraint generally selects only one feature without concern for which one is selected. A novel bag-of-features model based on elastic net sparse coding is presented in this paper. The model uses scale invariant feature transform (SIFT) feature descriptors to construct a feature dictionary, and then applies an elastic net regression model to the solution of sparse-coefficient vectors. Finally the sparse-coefficient vectors in each object image are pooled for classification. Compared with the conventional BoF model and the BoF model based on l1-norm sparse coding, our model achieves better recognition performance and is more robust to the variation of viewpoints. Experiments on the space object image database demonstrate the effectiveness of the proposed model.

Cite this article

SHI Jun , JIANG Zhiguo , FENG Hao , ZHANG Haopeng , MENG Gang . Elastic Net Sparse Coding-based Space Object Recognition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(5) : 1129 -1139 . DOI: 10.7527/S1000-6893.2013.0202

References

[1] Fan J, Li Y C, Sun H Y. The algorithm research of space object identification from multi-viewpoints. Journal of the Academy of Equipment Command & Technology, 2009, 20(6): 55-59. (in Chinese) 樊佳, 李迎春, 孙华燕. 多视点空间目标识别方法研究. 装备指挥技术学院学报, 2009, 20(6): 55-59.
[2] Lu D W, Ma J G, Zhao H K, et al. Space target recognition algorithm based on outline feature. Fire Control and Command Control, 2007, 32(5): 53-56. (in Chinese) 卢大威, 马君国, 赵宏坤, 等. 基于轮廓特征的空间目标识别算法. 火力与指挥控制, 2007, 32(5): 53-56.
[3] Lowe D G. Object recognition from local scale-invariant features. IEEE International Conference on Computer Vision (ICCV), 1999, 2: 1150-1157.
[4] Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005, 2: 524-531.
[5] Sharma G, Chaudhury S, Srivastava J B. Bag-of-features kernel eigen spaces for classification. 19th International Conference on Pattern Recognition (ICPR), 2008: 1-4.
[6] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
[7] Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009: 1794-1801.
[8] Wang J J, Yang J C, Yu K, et al. Locality-constrained linear coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010: 3360-3367.
[9] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[10] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320.
[11] Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1996, 58(1): 267-288.
[12] Zhang H P, Liu Z Y, Jiang Z G, et al. BUAA-SID1.0 space object image dataset. Spacecraft Recovery & Remote Sensing, 2010, 31(4): 65-71. (in Chinese) 张浩鹏, 刘正一, 姜志国, 等. BUAA-SID1.0空间目标图像数据库. 航天返回与遥感, 2010, 31(4): 65-71.
[13] Meng G, Jiang Z G, Liu Z Y, et al. Full-viewpoint 3D space object recognition based on kernel locality preserving projections. Chinese Journal of Aeronautics, 2010, 23(5): 563-572.
[14] Hu M K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
[15] Kauppinen H, Seppanen T, Pietikainen M. An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 201-207.
Outlines

/