Electronics and Control

Localization and Estimation of Gain-phase Error for Bistatic MIMO Radar Based on Sparse Representation

  • ZHENG Zhidong ,
  • ZHANG Jianyun ,
  • SONG Jing ,
  • XU Xuyu
Expand
  • Hefei Electronic Engineering Institute, Hefei 230037, China

Received date: 2012-07-04

  Revised date: 2012-11-09

  Online published: 2013-01-05

Supported by

National Natural Science Foundation of China (60702015)

Abstract

A new algorithm is presented for the joint estimation of angle and gain-phase error of a bistatic multiple-input multiple-output (MIMO) radar based on sparse representation. The transmitting and receiving covariance matrices are constructed by using the received data. Two one-dimensional sparse linear models are obtained by performing the vectorization operation on the transmitting and receiving covariance matrices. Then the mixed L2-L1 norm cost functions are constructed, in which the solution is derived by utilizing the alternating minimization technique. Furthermore, the coverage analysis of the iterative algorithm is provided. Compared with the existing algorithms, the proposed method fully utilizes the sparse characteristic of the spatial field of a target, and the noise can be suppressed by pre-estimating the noise power. The simulation results show that the proposed method can achieve good estimation performance even under low signal to noise ratio (SNR) and is robust against the variation of gain-phase errors.

Cite this article

ZHENG Zhidong , ZHANG Jianyun , SONG Jing , XU Xuyu . Localization and Estimation of Gain-phase Error for Bistatic MIMO Radar Based on Sparse Representation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(6) : 1379 -1388 . DOI: 10.7527/S1000-6893.2013.0238

References

[1] Fisher E, Haimovich A, Blum R S, et al. Spatial diversity in radar-models and detection performance. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.

[2] Haimovich A M, Blum R S, Lenard J, et al. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.

[3] Chao S Y, Chen B X, Dai F Z. MIMO radar detection in nonhomogeneous clutter. Acta Electronica Sinica, 2011, 39(3): 627-631. (in Chinese) 晁淑媛, 陈伯孝, 戴奉周. 非均匀杂波MIMO雷达检测. 电子学报, 2011, 39(3): 627-631.

[4] Li J, Stoica P. MIMO radar with collocated antennas. IEEE Signal Processing Magazine, 2007, 24(5): 106-114.

[5] Lv H, Feng D Z, He J, et al. Two-stage reduced-dimension clutter suppression method for airborne MIMO radar. Journal of Electronic & Information Technology, 2011, 33(4): 805-809. (in Chinese) 吕辉, 冯大政, 和洁, 等. 机载MIMO雷达两级降维杂波抑制方法. 电子与信息学报, 2011, 33(4): 805-809.

[6] Chen D F, Chen B X, Qin G D. Angle estimation using ESPRIT in MIMO radar. IEE Electronics Letters, 2008, 44(12): 770-771.

[7] Chen J L, Gu H, Su W M. Angle estimation using ESPRIT without pairing in MIMO radar. IEE Electronics Letters, 2008, 44(24): 1422-1423.

[8] Cheng Y B, Gu H, Su W M. A new method for fast multi-target localization in bistatic MIMO radar. Journal of Electronic & Information Technology, 2012, 34(2): 312-317. (in Chinese) 程院兵, 顾红, 苏卫民. 一种新的双基地MIMO雷达快速多目标定位算法. 电子与信息学报, 2012, 34(2): 312-317.

[9] Li J F, Zhang X F, Wang F. Quaternion Root-MUSIC algorithm for angle estimation in bistatic MIMO radar. Journal of Electronic & Information Technology, 2012, 34(2): 300-304. (in Chinese) 李建峰, 张小飞, 汪飞. 基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法. 电子与信息学报, 2012, 34(2): 300-304.

[10] Hyder M M, Mahata K. A joint sparse signal representation perspective for target detection using bistatic MIMO radar system. International Conference on Digital Signal Processing, 2011: 1-5.

[11] Swindlehurst A, Karlath T. A performance analysis of subspace-based methods in the presence of model error: Part I-the MUSIC algorithm. IEEE Transactions on Signal Processing, 1992, 40(7): 1758-1774.

[12] Liu X L, Liao G S. Multitarget localization and estimation of gain-phase error for bistatic MIMO radar. Acta Electronica Sinica, 2011, 39(3): 596-601. (in Chinese) 刘晓莉, 廖桂生. 双基地MIMO雷达多目标定位及幅相误差估计. 电子学报, 2011, 39(3): 596-601.

[13] Ma W K, Han H T, Yung C C. DOD estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 2010, 58(4): 2169-2180.

[14] Yin J, Chen T. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.

[15] Batu O, Cetin M. Parameter selection in sparsity-driven SAR imaging. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3040-3050.

[16] Zhang X D. Matrix analysis and applications. Beijing: Tsinghua Press, 2004: 104-110. (in Chinese) 张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2004: 104-110.

[17] Nocedal J, Wright S. Numerical optimization. New York: Springer, 1999: 35-65.

[18] Bill M, Radich K M. Single-snapshot DOA estimation and source number detection. IEEE Signal Processing Letters, 1997, 4(4): 109-111.

[19] Liu Y, Wu M Y, Wu S J. Fast OMP algorithm for 2D angle estimation in MIMO radar. Electronics Letters, 2010, 46(6): 444-445.

[20] Daubechies I, Devore R, Fornasier M. Iteratively-reweighted least squares minimization for sparse recovery. Applied Mathematics, 2009, 63(1): 1-38.

[21] Dmitry M, Mujdat C, Alan S W. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3023.

Outlines

/