ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Keystone Transform and MDCFT-based Detection and Parameter Estimation for Maneuvering Weak Targets
Received date: 2012-06-01
Revised date: 2012-11-23
Online published: 2013-04-23
Supported by
Weapon Equipment Scientific Research Project (2012230)
Detection of weak, supersonic and maneuvering targets is a great challenge for traditional radar as the signal-to-noise ratio of the target echoes is very low, and range cell migration and Doppler cell migration occur. To solve these problems, the Keystone transform and modified discrete Chirp-Fourier transform (MDCFT) are combined and a novel radar signal processing method based on this combination is proposed. The range cell migration is compensated by the Keystone transform, and then coherent integration of the Doppler spectrum spread echo is performed by the MDCFT. Furthermore, the method can perform parameter estimation at the same time of detecting the targets, which improves the efficiency of radar signal processing. Finally, the computational complexity and the performance of the method are analyzed, and the effectiveness of the method is verified by simulations.
ZHAN Lixiao , TANG Ziyue , ZHU Zhenbo . Keystone Transform and MDCFT-based Detection and Parameter Estimation for Maneuvering Weak Targets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(4) : 855 -863 . DOI: 10.7527/S1000-6893.2013.0146
[1] Skolnik M. Role of radar in microwaves. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 625-632.
[2] Su J, Xing M, Wang G, et al. High-speed multi-target detection with narrowband radar. IET Radar Sonar Navigation, 2010, 4(4): 595-603.
[3] Yu J, Xu J, Peng Y N. Long-time coherent integration method for targets with a radial acceleration. Journal of Tsinghua University: Science and Technology, 2010, 50(5): 793-796. (in Chinese) 余吉, 许稼, 彭应宁. 径向匀加速目标的长时间相参积累方法. 清华大学学报: 自然科学版, 2010, 50(5): 793-796.
[4] Bao Q, Chen Z, Zhang Y, et al. Long term integration of radar signals with unknown Doppler shift for ubiquitous radar. Systems Engineering and Electronics, 2011, 22(2): 219-227.
[5] Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al. Small-target detection in high-resolution heterogeneous sea-clutter: an empirical analysis. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1880-1898.
[6] Xie J L, Wang C Y. A method for hypersonic moving target detection based on range walk correcting and Doppler parameters compensating. Journal of Astronautics, 2011, 32(9): 2002-2008. (in Chinese) 谢纪岭, 王彩云. 基于距离走动校正和多普勒高阶项补偿的高超音速目标检测方法. 宇航学报, 2011, 32(9): 2002-2008.
[7] Wu Z P, He X H, Su T. Detecting multiple high speed targets using range migration and Doppler spread. Journal of Harbin Engineering University, 2010, 31(4): 476-480. (in Chinese) 吴兆平, 何学辉, 苏涛. 带有距离走动和多普勒扩散的高速运动目标检测. 哈尔滨工程大学学报, 2010, 31(4): 476-480.
[8] Pang C S. An accelerating target detection algorithm based on DPT and fractional Fourier transform. Acta Electronica Sinica, 2012, 40(1): 184-188. (in Chinese) 庞存锁. 基于离散多项式相位变换和分数阶傅里叶变换的加速目标检测算法. 电子学报, 2012, 40(1): 184-188.
[9] Bao Z, Xing M D, Wang T, Radar imaging approaches. Beijing: Publishing House of Electronics Industry, 2005. (in Chinese) 保铮, 邢孟道, 王彤. 雷达成像技术. 北京: 电子工业出版社, 2005.
[10] Huo K, Li X, Jiang W D, et al. Fast rotating target detection based on the segmental pseudo Keystone transform. Acta Electronica Sinica, 2011, 39(9): 2073-2079. (in Chinese) 霍凯, 黎湘, 姜卫东, 等. 基于分段伪Keystone变换的快速旋转目标检测. 电子学报, 2011, 39(9): 2073-2079.
[11] Zhang W J, Gao Z Z, Xu B, et al. Novel signal processing method for surveillance radar based on Keystone transform. Systems Engineering and Electronics, 2011, 33(9): 2007-2011. (in Chinese) 张卫杰, 高昭昭, 许博, 等. 基于Keystone变换的警戒雷达信号处理. 系统工程与电子技术, 2011, 33(9): 2007-2011.
[12] Xia X. Discrete Chirp-Fourier transform and its application to Chirp rate estimation. IEEE Transactions on Signal Processing, 2000, 48(11): 3122-3133.
[13] Sun H B, Guo X, Gu H, et al. Modified discrete Chirp-Fourier transform and its application to SAR moving target detection. Acta Electronica Sinica, 2003, 31(1): 25-28. (in Chinese) 孙泓波, 郭欣, 顾红, 等. 修正离散Chirp-Fourier变换及其在SAR运动目标检测中的应用. 电子学报, 2003, 31(1): 25-28.
[14] Liu A F, Zhu X H, Liu Z. ISAR range profile compensation of fast-moving target using modified discrete Chirp-Fourier transform. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 495-498. (in Chinese) 刘爱芳, 朱晓华, 刘中. 基于修正离散Chirp-Fourier变换的高速目标ISAR距离像补偿. 航空学报, 2004, 25(5): 495-498.
[15] Alexiadis D, Sergiadis G. Estimation of multiple accelerated motions using Chirp-Fourier transform and clustering. IEEE Transactions on Image Processing, 2007, 16(1): 142-152.
[16] Li L, Qiu T S. A novel method for joint parameter estimation of LFM signals in bistatic MIMO radar system based on FRFT. Journal of Electronics & Information Technology, 2012, 34(4): 878-884. (in Chinese) 李丽, 邱天爽. 基于分数阶傅里叶变换的双基地雷达线性调频信号的参数联合估计新方法. 电子与信息学报, 2012, 34(4): 878-884.
[17] Sun H B, Gu H, Su W M, et al. Using the filtering in fractional fourier domain for airborne SAR multiple moving targets detection. Acta Aeronautica et Astronautica Sinica, 2002, 23(1): 33-37. (in Chinese) 孙泓波, 顾红, 苏卫民, 等. 利用分数阶Fourier域滤波的机载SAR多运动目标检测. 航空学报, 2002, 23(1): 33-37.
[18] Sun H, Liu G, Gu H, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1416-1424.
[19] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515.
[20] Lv X, Xing M, Zhang S, et al. Keystone transformation of the Wigner-Ville distribution for analysis of multicomponent LFM signals. Signal Processing, 2009, 89(5): 791-806.
[21] Scaglione A, Barbarossa S. Statistical analysis of the product high-order ambiguity function. IEEE Transactions on Information Theory, 1999, 45(1): 343-356.
/
〈 | 〉 |