ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Primary Resonance Research on Ball Bearing-rotor System with Bearing Clearance
Received date: 2012-07-25
Revised date: 2012-10-06
Online published: 2012-11-22
Supported by
National Level Item
In order to reveal the resonance mechanism of a ball bearing-rotor system, a motion equation is established which takes into consideration the nonsymmetric bearing clearance due to gravity or assembly and the Hertz contact between the ball and race. In the case of primary resonance, analytical solution is firstly obtained by the averaging method, and the effects of system parameters are also discussed. On the basis of the singularity theory, transition sets in the parameter plane are calculated, and bifurcation modes of resonance solution in different parameter regions are investigated. Finally, theoretical analysis is verified by numerical simulation. Thus, a theoretical basis is provided for the vibration control of the ball bearing-rotor system.
Key words: ball bearing; clearance; Hertz contact; primary resonance; bifurcation
LI Hongliang , CHEN Yushu . Primary Resonance Research on Ball Bearing-rotor System with Bearing Clearance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(6) : 1356 -1362 . DOI: 10.7527/S1000-6893.2013.0236
[1] Ehrich F F. High order subharmonic response of high speed rotors in bearing clearance. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110(1): 9-16.
[2] Kim Y B, Noah S T. Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dyna-mics, 1990, 1(3): 221-241.
[3] Kim Y B, Noah S T. Quasi-periodic response and stabil-ity analysis for a nonlinear Jeffcott rotor. Journal of Sound and Vibration, 1996, 190(2): 239-253.
[4] Childs D W. Fractional-frequency rotor motion due to nonsymmetric clearance effects. Journal of Engineering for Power, 1982, 104(3): 533-541.
[5] Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a banlanced horizontal rotor. Journal of Sound and Vibration, 2000, 238(5): 723-756.
[6] Tiwari M, Gupta K, Prakash O. Dynamic response of an unbalanced rotor supported on ball bearings. Journal of Sound and Vibration, 2000, 238(5): 757-779.
[7] Bai C Q, Xu Q Y, Zhang X L. Nonlinear stability of balanced rotor due to the effect of ball bearing internal clearance. Applied Mathematics and Mechanics, 2006, 27(2): 159-169. (in Chinese) 白长青, 许庆余, 张小龙. 考虑径向内间隙的滚动轴承平衡转子系统的非线性动力稳定性. 应用数学和力学, 2006, 27(2): 159-169.
[8] Bai C Q, Xu Q Y. Numerical and experimental research on dynamic performance of ball bearings-offset disk rotor system. Chinese Journal of Applied Mechanics, 2007, 24(4): 540-543. (in Chinese) 白长青, 许庆余. 滚动轴承-偏置转子系统的动力特性数值分析与实验研究. 应用力学学报, 2007, 24(4): 540-543.
[9] Chen G. Rotor-ball bearing-stator coupling dynamic model including rubbing coupling faults. Journal of Vibration Engineering, 2007, 20(4): 361-368. (in Chinese) 陈果. 带碰摩耦合故障的转子-滚动轴承-机匣耦合动力学模型. 振动工程学报, 2007, 20(4): 361-368.
[10] Chen G, Li X Y. Study on imbalance-misalignment-rubbing coupling faults in aero-engine vibration. Journal of Aerospace Power, 2009, 24(10): 2277-2284. (in Chinese) 陈果, 李兴阳. 航空发动机整机振动中的不平衡-不对中-碰摩耦合故障研究. 航空动力学报, 2009, 24(10): 2277-2284.
[11] Chen G. Coupling dynamic model and dynamic analysis for whole aero-engine. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 548-559. (in Chinese) 陈果. 航空发动机整机耦合动力学模型及振动分析. 力学学报, 2010, 42(3): 548-559.
[12] Chen G. A coupling dynamic model for whole aero-engine vibration and its verification. Journal of Aerospace Power, 2012, 27(2): 241-254. (in Chinese) 陈果. 航空发动机整机振动耦合动力学模型及其验证. 航空动力学报, 2012, 27(2): 241-254.
[13] Bai C Q, Xu Q Y, Zhang X L. Dynamic properties analysis of ball bearings-liquid hydrogen turbopump used in rocket engine. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 258-261. (in Chinese) 白长青, 许庆余, 张小龙. 滚动轴承-火箭发动机液氢涡轮泵转子系统的动力特性分析. 航空学报, 2006, 27(2): 258-261.
[14] Chen Y S. Nonlinear vibration. Beijing: Higher Educa-tion Press, 2002. (in Chinese) 陈予恕. 非线性振动. 北京: 高等教育出版社, 2002.
[15] Chen Y S. Bifurcation and chaos theory of nonlinear vibration systems. Beijing: Higher Education Press, 1993. (in Chinese) 陈予恕. 非线性振动系统的分岔与混沌理论. 北京:高等教育出版社, 1993.
/
〈 | 〉 |