Material Engineering and Mechanical Manufacturing

Research on Trajectory Planning Method of Automated Tape Laying and Automated Fiber Placement for Surfaces with Holes

  • LI Junfei ,
  • WANG Xianfeng ,
  • XIAO Jun
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-08-02

  Revised date: 2012-10-05

  Online published: 2012-10-09

Supported by

Technology Pre-research of Civil Aircraft; National Natural Science Foundation of China (50905088); National Science and Technology Major Project (2010ZX04016-013); The Fundamental Research Funds for the Central Universities (NS2012112); Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(SAMC11-JS-07-222)

Abstract

A novel algorithm is presented to generate the trajectories for surfaces with holes during the process of automated tape laying (ATL) and automated fiber placement (AFP). In preprocessing, the surfaces in and out of the hole boundaries should be joined into a whole surface without any holes. The surface information can be obtained by STL (Stereo Lithography) files, and the topological reconstruction method is introduced for surfaces with holes as well. Then the "constant" trajectories can be planned within a chosen algorithm in the very whole surface, and the messages of trajectory points should be refined by the outlines of the hole boundaries. For boundary treatment, two methods are proposed: the "iteration method" and the "projection method". Their efficiency and precision are discussed, and the projection method is found to be more appropriate. Finally, the algorithm is realized by VC++ 6.0 programming, and verified on a composite front fuselage. The results show that the method is valid and effective.

Cite this article

LI Junfei , WANG Xianfeng , XIAO Jun . Research on Trajectory Planning Method of Automated Tape Laying and Automated Fiber Placement for Surfaces with Holes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(7) : 1716 -1723 . DOI: 10.7527/S1000-6893.2013.0286

References

[1] Xiao J, Li Y, Li J L. Application of automatic fiber placement in manufacture of composite structures in large aircraft. Aeronautical Manufacturing Technology, 2008(1): 50-53. (in Chinese) 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料构件制造中的应用. 航空制造技术, 2008(1): 50-53.
[2] Hyer M W, Charette R F. Use of curvilinear fiber format in composite structure design. Proceedings of the 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, 1989: 2137-2145.
[3] Katz Y, Haftka R T, Altus E. Optimization of fiber directions for increasing the failure load of a plate with a hole. Proceedings of the American Society of Composites 4th Technical Conference, Lancaster, PA: Technomic, 1989: 62-71.
[4] Reuschel D, Mattheck C. Three-dimensional fiber optimization with computer aided internal optimization. Aeronautical Journal, 1999, 109(1027): 415-420.
[5] Legrand X, Kelly D, Crosky A, et al. Optimisation of fibre steering in composite laminates using a genetic algorithm. Composite Structures, 2006, 75(1-4): 524-531.
[6] Shao G J, You Y P, Miao Q H. Optimization of fiber placement path for composite laminates with open holes. Fiber Reinforced Plastics/Composites, 2006(4): 31-34. (in Chinese) 邵冠军, 游有鹏, 缪群华. 复合材料开孔层合板的纤维铺放路径优化设计. 玻璃钢/复合材料, 2006(4): 31-34.
[7] Beakoua A, Canoa M, Le Cama J, et al. Modelling slit tape buckling during automated prepreg manufacturing: A local approach. Composite Structures, 2011, 93(10): 2628-2635.
[8] Xiong W L, Xiao J, Wang X F, et al. Algorithm of adaptive path planning for automated placement on meshed surface. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 434-441. (in Chinese) 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动辅放轨迹算法. 航空学报, 2013, 34(2): 434-441.
[9] Yang G, Liu W J, Wang W, et al. Research on the rapid slicing algorithm based on STL topology construction. Modern Manufacturing Engineering, 2009(10): 32-35. (in Chinese) 杨光, 刘伟军, 王维, 等. STL格式文件拓扑重建及快速切片算法研究. 现代制造工程, 2009(10): 32-35.
[10] Li Z Y, Xie C X, Yang J H. Rapid acquirement of STL files’ topologic information and timely layer process. Computer Engineering & Applications, 2002, 38(7): 32-35. (in Chinese) 李仲阳, 谢存禧, 杨家红. 基于STL文件的快速成型分层算法与毗邻拓扑信息的快速提取. 计算机工程与应用, 2002, 38(7): 32-35.
[11] Zeng W, Xiao J, Li Y, et al. Research on path planning and coverability analysis of automatic fiber placement for structures in revolving shell. Journal of Astronautics, 2010, 31(1): 239-243. (in Chinese) 曾伟, 肖军, 李勇, 等. 回转体自动铺丝轨迹规划与覆盖性分析. 宇航学报, 2010, 31(1): 239-243.
[12] Hale R D, Moon R, Lim K, et al. Integrated design and analysis tools for reduced weight, affordable fiber steered composites. Lawrence: University of Kansas, 2004.
[13] Shao G J, You Y P, Xiong H. Optimal fiber placement paths for free-form surface parts. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(Sup1): 144-148. (in Chinese) 邵冠军, 游有鹏, 熊慧. 自由曲面构件的纤维铺放路径规划. 南京航空航天大学学报, 2005, 37(Sup1): 144-148.
[14] Wang P Y. Research on fiber placement trajectory design algorithm for the free-form surface with given ply orientation information. Nanjing: College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, 2011. (in Chinese) 王培源. 基于铺层承载信息的自由曲面自动铺丝轨迹规划技术研究. 南京: 南京航空航天大学材料科学与技术学院, 2011.
[15] Li S Y, Wang X P, Zhu L J. Path planning for composite fiber placement. Aerospace Materials & Technology, 2009, 39(2): 25-29. (in Chinese) 李善缘, 王小平, 朱丽君. 复合材料铺丝成型中的路径规划. 宇航材料工艺, 2009, 39(2): 25-29.
[16] Zhou Y, An L L, Zhou L S. Research on composite fiber placement path generation algorithm. Aviation Precision Manufacturing Technology, 2006, 42(2): 39-41. (in Chinese) 周燚, 安鲁陵, 周来水. 复合材料自动铺丝路径生成技术研究. 航空精密制造技术, 2006, 42(2): 39-41.
[17] Wang N D, Liu Y, Xiao J. Fiber-placement path design for composite structures in pipy-form. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(2): 228-233. (in Chinese) 王念东, 刘毅, 肖军. 复合材料管状结构自动铺丝路径算法. 计算机辅助设计与图形学学报, 2008, 20(2): 228-233.
[18] Lu M, Zhou L S, Wang X P, et al. Fibre placement path planning and number determination for conic-shaped composite structures. Aerospace Materials & Technology, 2009, 39(6): 15-18. (in Chinese) 卢敏, 周来水, 王小平, 等. 锥形复合材料构件的铺丝路径规划与丝数求解. 宇航材料工艺, 2009, 39(6): 15-18.
[19] Waldhart C, Gurdal Z, Ribbens C. Analysis of tow placed, parallel fiber, variable stiffness laminates. Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit. Salt Lake City: AIAA Press, 1996: 2210-2220.
[20] Dang X D, Xiao J, Huan D J. Implementation on fiber placement parallel equidistant path generation algorithm. Journal of Wuhan University, 2007, 53(5): 613-616. (in Chinese) 党旭丹, 肖军, 还大军. 自动铺丝平行等距轨迹规划算法实现. 武汉大学学报, 2007, 53(5): 613-616.
[21] Shirinzadeh B, Cassidy G, Oetomo D, et al. Trajectory generation for open-contoured structures in robotic fibre placement. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380-394.
[22] Wang S. Research on trajectory planning of automatic tape laying. Nanjing: College of Material Science & Technology, Nanjing University of Aeronautics & Astronautics, 2007. (in Chinese) 王升. 自动铺带轨迹规划研究. 南京: 南京航空航天大学材料科学与技术学院, 2007.
[23] Luo H Y, Li Y, Xiao J, et al. Research on automatic tape-laying technique for composites——calculation method of tape-laying path on free-form surfaces. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1782-1787. (in Chinese) 罗海燕, 李勇, 肖军, 等. 复合材料自动铺带技术研究——曲面铺带轨迹算法. 航空学报, 2009, 30(9): 1782-1787.
Outlines

/