Solid Mechanics and Vehicle Conceptual Design

Effects of Thermal Environment on Dynamic Properties of Aerospace Vehicle Panel Structures

  • WU Zhenqiang ,
  • CHENG Hao ,
  • ZHANG Wei ,
  • LI Haibo ,
  • KONG Fanjin
Expand
  • Science and Technology on Reliability and Environment Engineering Laboratory, Beijing Institute of Structure and Environment Engineering, Beijing 100076, China

Received date: 2012-03-06

  Revised date: 2012-07-27

  Online published: 2012-09-05

Supported by

National Natural Science Foundation of China (11172046); Defense Industrial Technology Development Program (A0320010018)

Abstract

Hypersonic vehicles are exposed to a severe combination of aerodynamic, thermal and acoustic environments during cruise or re-entry flights, which presents a significant challenge for the integrity and the durability of thermal protection systems of aerospace vehicles. Dynamic properties of structures are the basis of dynamic response analysis and optimum design. Thermal dynamic properties of typical stiffened titanium panels with simply supported condition for aerospace vehicles are analyzed in this paper. A finite element model of panels is created using the software NASTRAN. The critical thermal buckling temperature of panels is solved using theoretical and finite element methods. Moreover, natural vibration frequencies and shapes which change with the increase of panel temperature are researched. Modal parameters of panel structures are compared between uniform and nonuniform temperature fileds. Results show that the thermal buckling of panel structures occurs easily in a thermal environment. Therefore, the thermal buckling and large deformation should be considered in thermal modal analysis. It is concluded that the thermal environment has an important effect on the dynamical properties of aerospace vehicle panel structures. The natural vibration frequencies of the panel structures will decrease with the reduction of elastic modulus in the thermal environment. Thermal stresses have many effects both on natural vibration frequencies and on natural vibration shapes. When temperature distribution is changed, the variations of natural vibration frequencies are approximately the same, but the variations of natural vibration shapes are different.

Cite this article

WU Zhenqiang , CHENG Hao , ZHANG Wei , LI Haibo , KONG Fanjin . Effects of Thermal Environment on Dynamic Properties of Aerospace Vehicle Panel Structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(2) : 334 -342 . DOI: 10.7527/S1000-6893.2013.0038

References

[1] Swanson A D, Coghlan S C, Pratt D M, et al. Hypersonic vehicle thermal structure test challenges. AIAA-2007-1670, 2007.
[2] Blevins R D, Holehouse I, Wentz K R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels. Journal of Aircraft, 1993, 30(6): 971-978.
[3] Jeyaraj P, Padmanabhan C, Ganesan N. Vibration and acoustic response of an isotropic plate in a thermal environment. Journal of Vibration and Acoustics, 2008, 130(10): 051005.
[4] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of vehicles. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11. (in Chinese) 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述. 航空学报, 2010, 31(1): 1-11.
[5] Xie W H, Zhang B M, Du S Y. Analysis and design of metallic thermal protection systems for reusable launch vehicle. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 650-656. (in Chinese) 解维华, 张博明, 杜善义. 重复使用飞行器金属热防护系统的有限元分析与设计. 航空学报, 2006, 27(4): 650-656.
[6] Liu Z Q, Liang W, Yang J L, et al. Analysis and design of metallic thermal protection systems for reusable launch vehicle. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 86-91.(in Chinese) 刘振祺, 梁伟, 杨嘉陵, 等. MTPS蜂窝夹芯结构传热性能及热应力分析. 航空学报, 2009, 30(1): 86-91.
[7] Yang X W, Li Y M, Geng Q. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1851-1859. (in Chinese) 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析. 航空学报, 2011, 32(10): 1851-1859.
[8] Wu Z Q, Ren F, Zhang W, et al. Research advances in thermal-acoustic testing of aerocraft structures. Missiles and Space Vehicle, 2010(2): 24-30. (in Chinese) 吴振强, 任方, 张伟, 等. 飞行器结构热噪声试验的研究进展. 导弹与航天运载技术, 2010(2): 24-30.
[9] Vosteen B L F, McWithey R R, Thompson R G. Effect of transient heating on vibration frequencies of some simple wing structures. NACA TN-4054, 1960.
[10] Kehoe M W, Snyder H T. Thermoelastic vibration test techniques. N91-19083, 1960.
[11] Thompson R C, Richards W L. Thermal-structural panel buckling tests. N92-15404, 1991.
[12] Hudson L, Stephens C. X-37 C/SiC ruddervator subcomponent test program. DFRC-1069, 2009.
[13] Shi X M, Yang B Y. Temperature field and mode analysis of flat plate with thermal environment of transient heating. Computer Aided Engineering, 2006, 15(S1): 15-18. (in Chinese) 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析.计算机辅助工程, 2006, 15(S1): 15-18.
[14] Liao R D, Zuo Z X, Rong K L. Model analysis of solid missile tail with consideration of the effect of high temperature. Journal of Mechanical Strength, 2003, 25(1): 98-101. (in Chinese) 廖日东, 左正行, 荣克林. 考虑高温影响的实心壁板式弹翼模态特性分析. 机械强度, 2003, 25(1): 98-101.
[15] Huang S Y, Wang Z Y. The structure modal analysis with thermal environment. Missiles and Space Vehicle, 2009(5): 50-56. (in Chinese) 黄世勇, 王智勇. 热环境下的结构模态分析. 导弹与航天运载技术, 2009(5): 50-56.
[16] Liu Q, Ren J T, Jiang J S, et al. Nonlinear thermal vibration characteristic analysis composite laminated plates. Journal of Dynamics and Control, 2005, 3(1): 78-83. (in Chinese) 刘芹, 任建亭, 姜节胜, 等. 复合材料层合板非线性热振动分析. 动力学与控制学报, 2005, 3(1): 78-83.
[17] Schneider C W. Acoustic fatigue of aircraft structures at elevated temperatures. AFFDL-TR-73-155, 1973.
[18] Ma Q F, Fang R S. Thermal-physical properties handbook. Beijing: China Agriculture Machine Press, 1986. (in Chinese) 马庆芳, 方荣生. 实用热物理手册. 北京: 中国农业机械出版社, 1986.
Outlines

/