Material Engineering and Mechanical Manufacturing

Multi-level Control Program Structure for Aircraft Surface Spray

  • WANG Zhaohui ,
  • CHEN Ken ,
  • WU Liao ,
  • MIAO Dongjing
Expand
  • Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China

Received date: 2012-05-14

  Revised date: 2012-08-21

  Online published: 2013-04-23

Supported by

National Natural Science Foundation of China (50975148); National High-tech Research and Development Program of China(2009AA043701) *Corresponding author. Tel.: 010-62773266 E-mail: kenchen@tsinghua.edu.cn

Abstract

To realize aircraft surface automatic spray by robotic technology, a trajectory planning technology for aircraft surface spray is proposed and a location method for spraying work is presented according to the geometric features of aircraft outside surface. Based on these, a multi-layer control program structure is classified into three layers, i.e., a main logic layer, a control programming layer, and an auxiliary function layer. The running of the whole program system is managed by the main logic layer, which could call modules in the control program layer and auxiliary function layer. The control program layer includes some control program modules of the subareas of the aircraft surface, and the auxiliary function layer includes the spraying process parameters, movement parameters, and system calibration parameters, etc. To quickly generate a control program structure, an offline programming method for aircraft outside surface spray is presented. The efficiency and maintainability of the method are proved in a surface spray on an aircraft model.

Cite this article

WANG Zhaohui , CHEN Ken , WU Liao , MIAO Dongjing . Multi-level Control Program Structure for Aircraft Surface Spray[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(4) : 928 -935 . DOI: 10.7527/S1000-6893.2013.0153

References

[1] Seegmiller N A, Bailiff J A, Franks R K. Precision robotic coating application and thickness control optimization for F-35 final finishes. SAE International Journal of Aerospace, 2010, 2(1): 284-290.
[2] Thornton J. DELMIA simulations help lockheed martin ft. worth put final coatings on F-35 aircraft—with precision.(2007-06-05).http://www.cdcza.co.za/news_LM_aero_DELMIA_PLM7.htm.
[3] Ponticel P. Lockheed goes with common inter face for F-35 painting. Aerospace Engineering and Manufacturing.(2011-04-14). http://www.sae.org/mags/sve/9701.
[4] Zhou L, Cai J D, Qian W, et al. Simple and convenient teaching of welding torch orientations for arc welding robot. Journal of Mechanical Engineering, 2010, 46(8): 73-77.(in Chinese) 周律, 蔡锦达, 钱炜, 等. 弧焊机器人焊枪姿态简便示教. 机械工程学报, 2010, 46(8): 73-77.
[5] Fang D D, Deng S H, Liao H L. Robotic off-line programming in thermal spraying. Software Guide, 2007(13): 26-28.(in Chinese) 方丹丹, 邓思豪, 廖汉林. 热喷涂机器人离线编程. 软件导刊, 2007(13): 26-28.
[6] Chen S G, Liu Z, Liang S F, et al. Design of integrated platform for spraying robot autonomous programming. Industrial Control Computer, 2010, 23(6): 45-46.(in Chinese) 陈圣国, 刘治, 梁少芳, 等. 喷涂机器人自主编程综合平台的设计. 工业控制计算机, 2010, 23(6): 45-46.
[7] Xia W, Wang K R, Liao X P, et al. Research on application and algorithm for interpolation points posture in virtual demonstration system of painting robot. Modern Manufacturing Engineering, 2009(10): 11-16.(in Chinese) 夏薇, 王科荣, 廖小平, 等. 喷漆机器人虚拟示教系统中喷枪轨迹插补点位姿的算法及应用研究. 现代制造工程, 2009(10): 11-16.
[8] Wang G L, Chen K, Chen Y, et al. Film thickness distribution model with variable parameters for air spray gun. Journal of Jilin University: Engineering and Technology Edition, 2012, 42(1): 188-192. (in Chinese) 王国磊, 陈恳, 陈雁, 等. 变参数下的空气喷枪涂层厚度分布建模. 吉林大学学报: 工学版, 2012, 42(1): 188-192.
[9] Chen Y, Yan H, Wang L Q, et al. Coating uniformity with a uniform robotic spray gun velocity. Journal of Tsinghua University: Science and Technology, 2010, 50(8): 1210-1218. (in Chinese) 陈雁, 颜华, 王力强, 等. 机器人均匀喷涂涂层均匀性分析. 清华大学学报: 自然科学版, 2010, 50(8): 1210-1218.
[10] Chen Y, Chen K, Shao J, et al. Redundant-robot-based painting system for variable cross-section S-shape pipe. Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. 2009: 743-749.
[11] Zhu X X. Free curve and surface modeling technology. Beijing: Science Press, 2000: 32-42. (in Chinese) 朱心雄. 自由曲线曲面造型技术. 北京: 科学出版社, 2000: 32-42.
[12] Huo W. Robot dynamics and control. Beijing: Higher Education Press, 2005: 16-31. (in Chinese) 霍伟. 机器人动力学与控制. 北京: 高等教育出版社, 2005: 16-31.
[13] Fang S L, Wu S Y, Li Q. Rapid NC programming system for variant parts. Computer Integrated Manufacturing Systems, 2006, 12(10): 1657-1661. (in Chinese) 方水良, 武胜勇, 李强. 变型零件数控程序快速生成系统研究. 计算机集成制造系统, 2006, 12(10): 1657-1661.
[14] Wang B, Yuan X S, Zhang W M, et al. Design of circular interpolation program for numerical control machine tool based on PIC microcontroller. Machine Tool & Hydraulics, 2011, 39(18): 94-96. (in Chinese) 王滨, 袁训山, 张文明, 等. 基于PIC单片机的数控机床圆弧插补程序设计. 机床与液压, 2011, 39(18): 94-96.
[15] Wang J Q, Pan W Q, Zhang M H. Study on the macro of automatically tool-change of the open-architecture CNC lathe based on Mach3. Manufacturing Automation, 2012(5): 63-65. (in Chinese) 王建强,潘王琴,张棉好. 基于Mach3的开放式数控车床系统换刀宏程序开发. 制造业自动化, 2012(5): 63-65.
Outlines

/