Electronics and Control

Chirp Function Sparse Feature Extraction and Sorting of Radar Signals Based on FRFT

  • HUANG Yu ,
  • LIU Feng ,
  • WANG Zezhong ,
  • XIANG Chongwen
Expand
  • Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2012-02-24

  Revised date: 2012-07-26

  Online published: 2012-08-27

Supported by

National Natural Science Foundation of China (60902054); China Postdoctoral Science Foundation (20090460114, 201003758)

Abstract

Feature analysis is the basis of radar signal sorting and identifying, and feature extraction of a new system radar signals through sparse decomposition is a new research topic. This paper uses the fractional Fourier transform kernel function as the basic chirp function of sparse decomposition to make up chirp functions with similar parameters into a function family for extracting sparse components, and derive the sparse decomposition formula with a matching pursuit in the fractional Fourier domain. Then a characteristic parameter sequence is formed consisting of chirp-based sparse components’ chirp-ratio and initial frequency, and the radar signal pulses are divided into five classes for sorting and identifying. Simulation analysis proves the validity of the derived conclusion, and results show that the linear or curved time-frequency characteristics of radar signals still have 95% correct sorting probability when the SNR is -3 dB, sampling frequency is 500 MHz, observed time is 2 μs, and the chirp-ratio is no more than 100 MHz/μs.

Cite this article

HUANG Yu , LIU Feng , WANG Zezhong , XIANG Chongwen . Chirp Function Sparse Feature Extraction and Sorting of Radar Signals Based on FRFT[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(2) : 393 -400 . DOI: 10.7527/S1000-6893.2013.0045

References

[1] Pace P E. Detecting and classifying low probability of intercept radar. 2nd ed. Norwood:Artech House, 2009: 31-37.

[2] Si X C, Chai J F. Feature extraction and auto-sorting to envelope function of rotation angle α domain of radar signals based on FRFT. Journal of Electronics & Information Technology, 2009, 31(8): 1892-1897. (in Chinese) 司锡才, 柴娟芳. 基于 FRFT 的 α 域-包络曲线的雷达信号特征提取及自动分类. 电子与信息学报, 2009, 31(8): 1892-1897.

[3] López-Risueno G, Grajal J. Unknown signal detection via atomic decomposition. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001: 174-177.

[4] López-Risueno G, Grajal J. Multiple signal detection and estimation using atomic decomposition and EM. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 84-102.

[5] López-Risueno G, Grajal J, Yeste-Ojeda O. Atomic decomposition-based radar complex signal interception. IEEE Proceedings Radar,Sonar and Navigation, 2003, 150(4): 323-331.

[6] Fadili M J, Starck J L, Bobin J, et al. Image decomposition and separation using sparse representations: an overview. Proceedings of the IEEE, 2010, 98(6): 983-994.

[7] Mann S, Haykin S. The chirplet transform: physical considerations. IEEE Transactions on Signal Processing, 1995, 43(11): 2745-2761.

[8] Bultan A. A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing, 1999, 47(3): 731-745.

[9] Greenberg J M, Wang Z S, Li J. New approaches for chirplet approximation. IEEE Transactions on Signal Processing, 2007, 55(2): 734-741.

[10] Cho N, Kuo C C J. Sparse music representation with source-specific dictionaries and it’s application to signal separation. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(2): 326-337.

[11] Luo J S, Yu D J, Peng F Q. Multicomponent LFM signals detection based on multi-scale chirplet sparse signal decomposition. Journal of Electronics & Information Technology, 2009, 31(11): 2781-2785. (in Chinese) 罗洁思, 于德介, 彭富强. 基于多尺度线性调频基信号稀疏分解的多分量LFM信号检测. 电子与信息学报, 2009, 31(11): 2781-2785.

[12] Tao R, Deng B, Wang Y. Fractional Fourier transform and its applications. Beijing: Tsinghua University Press, 2009: 12-26. (in Chinese) 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用. 北京: 清华大学出版社, 2009: 12-26.

[13] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Society for Industrial and Applied Mathematics Journal on Scientific Computing, 1998, 20(1), 33-61.

[14] Bultheel A. A two-phase implementation of the fractional Fourier transform. TW 588, Leuven: Katholieke Universiteit Leuven, 2011: 1-11.

[15] Skolnik M I. Radar handbook. 3rd ed. New York:McGraw-Hill Companies, 2008: 8.1-8.26.

Outlines

/