Material Engineering and Mechanical Manufacturing

Corrosion Behavior of 300M Ultra-high Strength Steel in Simulated Gap Water Environment

  • ZHANG Mulin ,
  • ZHU Liqun ,
  • LIU Huicong ,
  • YE Xubin ,
  • LIU Jianzhong
Expand
  • 1. Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2012-05-02

  Revised date: 2012-07-09

  Online published: 2013-04-23

Abstract

The gap water produced in an airplane's structural parts during its service usually leads to the corrosion of structure materials. In this paper, the corrosion behavior of 300M ultra-high strength steel in simulated gap water is studied by evaluating the corrosion products, their morphology, weight loss, corrosion rate, damage area, pH of the solution, and the ratio of the corrosion media volume to the exposed area of 300M steel, etc. The results show that the corrosion initiates with pitting, and gradually developes into general corrosion with the pits scaling out and merging. As corrosion time extends, both corrosion weight loss and damage area ratio increase, while the corrosion damage area ratio exhibits a trend of power function. The pH in the simulated gap water first increases from 4.2 to 5.2 and then decreases to 4.8-5.0. The average corrosion rate decreases linearly from 0.289 g/(m2·h) to 0.120 g/(m2·h). The results of electrochemical impedance spectroscopy indicate that the size of the capacitive reactance arc increases with the extension of corrosion time. It illustrates that the corrosion products formed in the surface of steel seem to protect the matrix, which agree with the regular pattern of corrosion rate. In addition, the increase in area-to-volume ratio, i.e., the ratio of corrosion media volume to the exposed area of 300M steel, results in an increase in corrosion weight loss and corrosion rate.

Cite this article

ZHANG Mulin , ZHU Liqun , LIU Huicong , YE Xubin , LIU Jianzhong . Corrosion Behavior of 300M Ultra-high Strength Steel in Simulated Gap Water Environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(4) : 954 -962 . DOI: 10.7527/S1000-6893.2013.0156

References

[1] Chen Q Z, Kang X H, Liu J G, et al. Discussion about military aircraft anti-corrosion and calendar life research. China Surface Engineering, 2010(4): 1-6. (in Chinese) 陈群志, 康献海, 刘健光, 等. 军用飞机腐蚀防护与日历寿命研究. 中国表面工程, 2010(4): 1-6.
[2] Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theoretical and Applied Fracture Mechanics, 2005, 43(1): 121-132.
[3] Liu W T, Li Y H, Chen Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures. Journal of Beijing University of Aeronautics and Astronautics, 2002(1):109-112. (in Chinese) 刘文珽, 李玉海, 陈群志, 等. 飞机结构腐蚀部位涂层加速试验环境谱研究. 北京航空航天大学学报, 2002(1): 109-112.
[4] Hao X L, Liu J H, Li S M, et al. Effect of neutral salt spray precorrosion on fatigue life of AF1414 steel. Journal of Aeronautics and Materials, 2010(1):67-71. (in Chinese) 郝雪龙, 刘建华, 李松梅, 等. 中性盐雾预腐蚀对AF1410高强钢疲劳寿命的影响. 航空材料学报, 2010(1): 67-71.
[5] Liu M T, Liu J H, Zhong P, Research development of corrosion resistance of ultra-high strength steel. Science & Technology, 2010, 28(9): 112-115. (in Chinese) 柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展. 科技导报, 2010, 28(9): 112-115.
[6] Liu P, Cai J P, Wang X D, et al. Progress of aircraft landing gear materials protections technology. Equipment Environment Engineering, 2011(2):67-71. (in Chinese) 刘鹏, 蔡健平, 王旭东, 等. 飞机起落架材料防护技术现状及研究进展. 装备环境工程, 2011(2): 67-71.
[7] Liu D X, Jin S, He J W. Stress corrosion cracking of ultra-high strength steel 300M. Special Steel, 1997(6):20-23. (in Chinese) 刘道新, 金石, 何家文. 300M超高强度钢的应力腐蚀开裂. 特殊钢, 1997(6): 20-23.
[8] Graa M L A, Hoo C Y, Silva O M M, et al. Failure analysis of a 300M steel pressure vessel. Engineering Failure Analysis, 2009, 16(1): 182-186.
[9] Lu M X, Zheng X L. Effect of environment medium and stress ratio on CF crack initiation life for 300M steel. Acta Aeronautica et Astronautica Sinica, 1994, 15(3):378-382. (in Chinese) 路民旭, 郑修鳞. 环境介质与应力比对300M钢腐蚀疲劳裂纹萌生寿命的影响. 航空学报, 1994, 15(3): 378-382.
[10] Yang D F, Zhao Z Y. Corrosion impact fatigue behavior of AF1410 steel and 300M steel. Journal of Materials Engineering, 2003(1):3-5. (in Chinese) 杨东方, 赵振业. AF1410与300M钢的腐蚀冲击疲劳行为. 材料工程, 2003(1): 3-5.
[11] Tang Z H, Lu F, Zhang X Y, et al. Development of surface protection for aeronautical high-strength structural steel and stainless steel. Journal of Aeronautical Materials, 2003, 23(S1):261-266. (in Chinese) 汤智慧, 陆峰, 张晓云, 等. 航空高强度结构钢及不锈钢防护研究与发展. 航空材料学报, 2003, 23(S1): 261-266.
[12] Zhang D. Corrosion and corrosion control of aircraft structure. Beijing: National Defence Industry Press, 1993:63-71. (in Chinese) 张栋. 飞机结构的腐蚀与腐蚀控制. 北京:国防工业出版社, 1993: 63-71.
[13] Liu D X. Corrosion and protection of materials. Northwestern Polytechnical University Press, 2006:15-18. (in Chinese) 刘道新. 材料的腐蚀与防护. 陕西: 西北工业大学出版社, 2006: 15-18.
[14] Zhu Z T, Mu Z T, Su W G, et al. Corrosion grade evaluation of aluminum alloy based on image processing technique. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 383-386. (in Chinese) 朱做涛, 穆志韬, 苏维国, 等. 基于图像处理技术的铝合金腐蚀等级评定方法. 南京航空航天大学学报, 2010, 42(3): 383-386.
[15] Gan Y, Li Y, Lin H C. Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl. Corrosion Science, 2001, 43(3): 397-411.
[16] Hoerlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles. Corrosion Science, 2004, 46(6): 1431-1465.
[17] Hao X C, Su P, Xiao K, et al. Influence of NaCl concentration on corrosion products of weathering steel. Corrosion & Protection, 2009, 30(5):297-299. (in Chinese) 郝献超, 苏鹏, 肖葵, 等. 不同NaCl浓度对耐候钢腐蚀产物的影响. 腐蚀与防护, 2009, 30(5): 297-299.
[18] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corrosion Science, 2009, 51(5): 997-1006.
[19] Yang J H, Liu Q Y, Wang X D, et al. The progress of investigation on weathering steel and its rust layer. Journal of Chinese Society for Corrosion and Protection, 2007, 27(6):367-372. (in Chinese) 杨景红, 刘清友, 王向东, 等. 耐候钢及其腐蚀产物的研究概况. 中国腐蚀与防护学报, 2007, 27(6): 367-372.
[20] Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266(1-3): 155-159.
[21] Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy. Beijing: Science Press, 2002:106-107. (in Chinese) 曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 106-107.
[22] Sun M, Xiao K, Dong C F, et al. Electrochemical behaviors of ultra-high strength steels with corrosion products. Acta Metallurgica Sinica, 2011, 47(4):442-448. (in Chinese) 孙敏, 肖葵, 董超芳, 等. 带腐蚀产物超高强钢的电化学行为. 金属学报, 2011, 47(4): 442-448.
Outlines

/