Fluid Mechanics and Flight Mechanics

Coupled Design of Maneuver Glide Reentry Trajectory and Aerodynamic Characteristic Parameters Considering No-fly Zone

  • YONG Enmi ,
  • QIAN Weiqi ,
  • TANG Wei ,
  • FENG Yi
Expand
  • State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2012-01-21

  Revised date: 2012-03-26

  Online published: 2013-01-19

Abstract

A coupled maneuver trajectory and aerodynamic characteristic parameters design approach considering no-fly zone is developed to obtain the best aerodynamic and maneuver performance of a glide reentry vehicle. The aerodynamic characteristic parameters achieved by a parabola drag model are taken as the design variables of the outer loop of the coupled design. In the inner loop, the normalized lift coefficient and bank angle are modulated to get a reentry trajectory while avoiding the no-fly zone at a given lift-drag ratio. For the goal of the minimization of the heat load, the best aerodynamic property parameters are designed to achieve the maneuver ability with the constraints of the position and velocity. A lateral geometry guidance is developed to generate the reentry trajectory in the inner loop. The numerical simulation indicates that the larger the radius of the no-fly zone is, the higher the lift-drag ratio is required of the vehicle for the reentry trajectory to just go around the no-fly zone. The results demonstrate that the coupled design approach is effective and can provide a useful reference for aerodynamic configuration design.

Cite this article

YONG Enmi , QIAN Weiqi , TANG Wei , FENG Yi . Coupled Design of Maneuver Glide Reentry Trajectory and Aerodynamic Characteristic Parameters Considering No-fly Zone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(1) : 66 -75 . DOI: 10.7527/S1000-6893.2013.0009

References

[1] Roberto A, Michèle L, Ryan P S, et al. Aerogravity-assist maneuvers: coupled trajectory and vehicle shape optimization. Journal of Spacecraft and Rockets, 2007, 44(5): 1051-1059.

[2] Joshua E J, Mark J L,Ryan P S. Coupled entry heat shied/trajectory optimization for lunar return. AIAA-2008-6557, 2008.

[3] Periklis P, Prabhakar S. Trajectory coupled aerothermodynamics modeling for atmospheric entry probes at hypersonic velocities, AIAA-2006-1034, 2006.

[4] Timothy R J, Richard G C. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 551-571.

[5] Hu Z D. Research on trajectory planning and guidance for space-based strike weapon. Changsha: National University of Defense Technology, 2009.(in Chinese) 胡正东. 天基对地打击武器轨道规划与制导技术研究. 长沙: 国防科学技术大学, 2009.

[6] Xie Y, Liu L H, Tang G J, et al. Weaving maneuver trajectory design for hypersonic glide vehicles. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2174-2181. (in Chinese) 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计. 航空学报, 2011, 32(12): 2174- 2181.

[7] Vinh N X, Der M M. Optimal multiple-pass aeroassisted plane change. Acta Astronautica, 1990, 21(11/12): 749-758.

[8] Ruan C R. Optimal trajectory in atmospheric flight. Beijing: Press of Astronautics, 1987: 42-43. (in Chinese) 阮春荣. 大气中飞行的最优轨迹.北京:宇航出版社,1987: 42-43.

[9] Vinh N X, Busemann A, Culp R D. Hypersonic and planetary entry flight mechanics. Ann Arbor, MI: University of Michigan Press, 1980: 26-27.

[10] Jia P R, Chen K J, He L. Long-range rocket ballistics. Changsha: Press of National University of Defense Technology, 1993: 40-42. (in Chinese) 贾沛然, 陈克俊, 何力. 远程火箭弹道学. 长沙: 国防科学技术大学出版社, 1993: 40-42.

[11] Yong E M, Tang G J, Chen L. Rapid trajectory planning for hypersonic unpowered long-range reentry vehicles with multi-constraints. Journal of Astronautics, 2008, 29(1):46-51. (in Chinese) 雍恩米, 唐国金, 陈磊. 高超声速无动力远程滑翔飞行器多约束条件下的轨迹快速生成.宇航学报,2008,29(1):46-51.

[12] Yong E M, Chen L, Tang G J. Trajectory optimization of hypersonic gliding reentry vehicle based on the physical programming. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1091-1096. (in Chinese) 雍恩米, 陈磊, 唐国金. 基于物理规划的高超声速飞行器滑翔式再入轨迹优化.航空学报, 2008, 29(5): 1091- 1096.

[13] Hu J X. Entry guidance technology study for reusable launch vehicle. Changsha: National University of Defense Technology, 2007. (in Chinese) 胡建学. 可重复使用跨大气层飞行器再入制导研究. 长沙: 国防科学技术大学, 2007.

[14] Zhang Z C, Pan H L, Liu C P, et al. Hypersonic aerothermodynamics and thermal protection. Beijing: Press of National Defense Industry, 2003: 77-79.(in Chinese) 张志成, 潘海林, 刘初平, 等. 高超声速气动热和热防护. 北京: 国防工业出版社, 2003: 77-79.

[15] Timothy R J. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints. California: Air Force Institute of Technology, Air University, 2007.

[16] Shen Z J. On-board three-dimensional constrained entry flight trajectory generation.Ames, Iowa: Iowa State University, 2002.

Outlines

/