ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Simulation of Ablation Damage of Composite Laminates Subjected to Lightning Strike
Received date: 2012-03-10
Revised date: 2012-05-15
Online published: 2012-05-30
Supported by
National Natural Science Foundation of China (51175424); "111" Project (B07050); Basic Research Foundation of Northwestern Polytechnical University (JC20110257)
In order to study the issue of lightning ablation of composite laminates, a three dimensional finite element model of composite laminate ablation is constructed through a coupled thermal-electrical-structural analysis of composite laminates subjected to lightning strike. Lightning strike responses of different impulse waveforms of composite laminates are simulated through element deletion method. The damage mechanism and damage pattern of composite laminates subjected to lightning strike is analyzed. The mechanism of the transient heat transfer and heat decomposition of composite laminates subjected to lightning strikes of different impulse waveforms and different peak currents is demonstrated. The influence of different lightning parameters on ablation results is analyzed. The results show that the ablation size and inner damage of the composite laminate is influenced greatly by the peak current, electrical charge and action integral of the lightning strike.
Key words: element deletion method; lightning strike; composites; damage; ablation
DING Ning , ZHAO Bin , LIU Zhiqiang , WANG Fusheng , GAN Jian . Simulation of Ablation Damage of Composite Laminates Subjected to Lightning Strike[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(2) : 301 -308 . DOI: 10.7527/S1000-6893.2013.0034
[1] Uman M A, Rakov V A. The interaction of lightning with airborne vehicles. Progress in Aerospace Sciences, 2003, 39(1): 61-81.
[2] Feraboli P, Miller M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 954-967.
[3] Fisher F A, Plumer J A, Perala R A. Aircraft lightning protection handbook. Atlanta: Fedaral Aviation Administration Technical Centre, 1989.
[4] Rupke E. Lightning direct effect handbook. Pittsfield: Lightning Technologies Inc. AGATE-WP31-031027-043, 2002.
[5] Metwally I A, A-Rahim A A, Heidler F, et al. Computation of transient-temperature profiles in objects exposed to simulated lightning currents. International Journal of Thermal Sciences, 2006, 45(7): 691-696.
[6] Deierling P E, Zhupanska O I. Experimental study of high electric current effects in carbon/epoxy composites. Composites Science and Technology, 2011, 71(14): 1659-1664.
[7] Kawakami H, Feraboli P. Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1247-1262.
[8] Ogasawara T, Hirano Y, Yoshimura A, et al. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Composites Part A: Applied Science and Manufacturing, 2010, 41(8):973-981.
[9] Hirano Y, Katsumata S, Iwahori Y, et al. Artificial lightning testing on graphite/epoxy composite laminate. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1461-1470.
[10] Zhang X Y. Coupled simulation of heat transfer and temperature of the composite rocket nozzle wall. Aerospace Science and Technology, 2011, 15(3): 402-408.
[11] Gou J, Tang Y, Liang F, et al. Carbon nanofiber paper for lightning strike protection of composite materials. Composites: Part B, 2010, 41(2): 192-198.
[12] Ogasawara T, Aoki T, Hassan M S A, et al. Ablation behavior of SiC fiber/carbon matrix composites under simulated atmospheric reentry conditions. Composites Part A: Applied Science and Manufacturing, 2011, 42(3): 221-228.
[13] Fu D S, Qi S H, Cheng Y, et al. Study on laser irradiation properties of T-700 carbon fiber reinforced plastic. Composite Materials Review, 2010, 24(3): 39-41. (in Chinese) 付东升, 齐暑华, 程勇, 等. T-700碳纤维增强复合材料的激光辐照性能研究. 材料导报, 2010, 24(3): 39-41.
[14] Chen B, Wan H, Mu J Y, et al. Ablative mechanism of carbon fiber/epoxy composite irradiated by repetition frequency laser. High Power Laser and Particle Beams, 2008, 20(4): 547-552. (in Chinese) 陈博, 万红, 穆景阳, 等. 重频激光作用下碳纤维/环氧树脂复合材料热损伤规律. 强激光与粒子束, 2008, 20(4): 547-552.
[15] Li Y D, Zhang G C, Wu P, et al. Numerical calculation for ablation of carbon fiber/epoxy resin laminated composites under continuous laser irradiation. Journal of Solid Rocket Technology, 2008, 31(3): 262-265. (in Chinese) 李雅娣, 张钢锤, 吴平, 等. 炭纤维/环氧树脂复合材料层合板连续激光烧蚀数值计算. 固体火箭技术, 2008, 31(3): 262-265.
[16] Lu D S, Song G M, Zhou Y, et al. Numerical simulation of ablation behavior of spacecraft thermo-resistance components. Journal of Solid Rocket Technology, 2002, 25(2): 67-69. (in Chinese) 吕德生, 宋桂明, 周玉, 等. 航天飞行器防热部件烧蚀行为的数值模拟. 固体火箭技术, 2002, 25(2): 67-69.
[17] Chen J K, Sun C T, Chang C I. Failure analysis of a graphite/epoxy laminate subject to combined thermal and mechanical loading. Composite Materical, 1985, 19(5): 408-423
[18] Griffisetal C A, Masumra R A, Chang C I, et al. Response of graphite epoxy composite subjected to rapid heating. Composite Material, 1981, 15(5): 427-442.
[19] Suzuki Y, Todoroki A, Matsuzaki R, et al. Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads. Composites Part A: Applied Science and Manufacturing, 2012, 43(1): 53-64.
[20] Xie X L, Liao J, Fan H Q, et al. Detecting impact damage-resistance change in carbon fiber/epoxy-matrix laminate by ultrasonic F-scan. Journal of Aeronautical Materials, 2009, 29(3): 107-110. (in Chinese) 谢小林, 廖嘉, 范红青, 等. 超声F扫描检测碳/环氧复合材料层合板冲击损伤-电阻变化. 航空材料学报, 2009, 29(3): 107-110.
/
〈 | 〉 |