A new numerical viscous vortex simulation method is developed for unsteady rotor flow fields in which large-scale eddies are divided into small vortex particles.Vortex motion and transport processes are obtained by solving the Navier-Stokes equations represented in the vorticity-velocity form.The viscous diffusion term is calculated by a particle strength exchange method with high precision.The circulation of the blade bound vortex and new vortex particles are calculated by using the Weissinger-L lifting surface theory.To improve computational efficiency significantly, the fast multiple method (FMM) is introduced into the calculation of induced velocity and its gradient.By means of the above method, the rotor wake geometry and downwash of different rotors are investigated in hover and forward flight conditions.The validity of this method in rotor flow analysis is verified by comparing with available experimental data.Furthermore, the viscous vortex method is compared with the computational fluid dynamics(CFD) method and the traditional free wake method respectively.The comparison results indicate that the current method has the advantage of better rotor wake capture over the other methods while maintaining efficiency.
WEI Peng
,
SHI Yongjie
,
XU Guohua
,
ZHAO Qijun
. Numerical Method for Simulating Rotor Flow Field Based upon Viscous Vortex Model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012
, (5)
: 771
-780
.
DOI: CNKI:11-1929/V.20111014.1505.005
[1] Bagai A, Leishman J. Rotor free-wake modeling using a pseudoimplicit relaxation algorithm.Journal of Aircraft, 1995, 32(6): 1276-1285.
[2] Bhagwat M J, Leishman J G. Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms.Journal of the American Helicopter Society, 2001, 46(1): 59-71.
[3] Strawn R C, Caradonna F X, Duque E P N. 30 years rotorcraft computational fluid dynamics research and development.Journal of the American Helicopter Society, 2006, 51(1): 5-21.
[4] Hariharan N, Sankar L. First-principles based high order methodologies for rotorcraft flowfield studies. Proceedings of 55th Annual Forum of AHS: American Helicopter Society. 1999: 1921-1933.
[5] Dietz M, Kessler M, Krmer E. Tip vortex conservation on a helicopter main rotor using vortex-adapted chimera grids.AIAA Journal, 2007, 45(8): 2062-2074.
[6] Brown R E, Line A J. Efficient high-resolution wake modeling using the vorticity transport equation.AIAA Journal, 2005, 43(7): 1434-1443.
[7] Brown R E. Rotor wake modeling for flight dynamic simulation of helicopters.AIAA Journal, 2000, 38(1): 57-63.
[8] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method. 46th AIAA Aerospace Sciences Meeting and Exhibit.Reno: American Institute of Aeronautics and Astronautics, 2008: 1-12.
[9] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method.AIAA Journal, 2009, 47(4): 902-915.
[10] Zhao J G, He C J. A viscous vortex particle model for rotor wake and interference analysis.Journal of the American Helicopter Society, 2010, 55(1): 1-14.
[11] Li C H, Xu G H. The rotor free wake analytical method for tiltrotor aircraft in hover and forward flight.Acta Aerodynamica Sinica, 2005, 23(2): 152-156.(in Chinese) 李春华, 徐国华.悬停和前飞状态倾转翼机的旋翼自由尾迹计算方法.空气动力学学报, 2005, 23(2): 152-156.
[12] Xu G H, Wang S C. Freewake calculation for helicopter rotor in forward flight.Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(6): 648-653.(in Chinese) 徐国华, 王适存.前飞状态直升机旋翼的自由尾迹计算.南京航空航天大学学报, 1997, 29(6): 648-653.
[13] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids.Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 434-436.(in Chinese) 杨爱明, 乔志德.基于运动嵌套网格的前飞旋翼绕流Navier-Stokes方程数值计算.航空学报, 2001, 22(5): 434-436.
[14] Cao Y H, Yu Z Q, Su Y, et al. Combined free wake/CFD methodology for predicting transonic rotor flow in hover. Chinese Journal of Aeronautics, 2002, 15(2): 65-71.
[15] Xu H Y, Ye Z Y, Wang G, et al. Numerical simulation of rotor forward flight flow based on the unstructured dynamic patched grid.Acta Aerodynamica Sinica, 2007, 25(3): 325-329.(in Chinese) 许和勇, 叶正寅, 王刚, 等.基于非结构运动对接网格的旋翼前飞流场数值模拟.空气动力学学报, 2007, 25(3): 325-329.
[16] Ye L, Zhao Q J, Xu G H. An adaptive unstructured embedded mesh methodology suitable for the calculation on the rotor vortex flowfield.Acta Aerodynamica Sinica, 2010, 28(3): 261-266.(in Chinese) 叶靓, 招启军, 徐国华.一种适合于旋翼涡流场计算的非结构自适应嵌套网格方法.空气动力学学报, 2010, 28(3): 261-266.
[17] Cottet G, Koumoutsakos P. Vortex methods: theory and practice.Cambridge: Cambridge University Press, 2000:55-89.
[18] Mas-Gallic S. Contribution à l'analyse numérique des méthodes particulaires.La Caada: Université Pierre-et-Marie-Curie, 1987.
[19] Lindsay K T. A three-dimensional Cartesian tree-code and applications to vortex sheet roll-up.Michigan: University of Michigan, 1997.
[20] Greengard L, Rokhlin V. A fast algorithm for particle simulations.Journal of Computational Physics, 1987, 73(2): 325-348.
[21] Boatwright W D. Measurements of velocity components in the wake of a full-scale helicopter rotor in hover.AD-754 644, 1972.
[22] Caradonna F, Tung C. Experimental and analytical studies of a model helicopter rotor in hover.Vertica, 1981, 5(1): 149-161.
[23] Landgrebe A J. The wake geometry of a hovering helicopter rotor and its influence on rotor performance.Journal of the American Helicopter Society, 1972, 17(4): 3-15.
[24] Elliott J, Althoff S, Sailey R. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight.Volume 2: Rectangular planform blades at an advance ratio of 0.23. NASA-TM-100542, 1988.
[25] Bagai A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis.Maryland: University of Maryland, 1995.
[26] Shi Y J, Zhao Q J, Fan F, et al. A new single-blade based hybrid CFD method for hovering and forward-flight rotor computation.Chinese Journal of Aeronautics, 2011, 24(2): 127-135.