Electronics and Control

Application of an Improved Gaussian-like Sum Particle Filter to Large Misalignment Transfer Alignment

  • GUO Ziwei ,
  • MIAO Lingjuan ,
  • ZHAO Hongsong ,
  • SHEN Jun
Expand
  • School of Automation, Beijing Institute of Technology, Beijing 100081, China

Received date: 2012-01-17

  Revised date: 2012-03-20

  Online published: 2013-01-19

Supported by

National Natural Science Foundation of China (61153002)

Abstract

On the basis of small misalignment transfer alignment models, a velocity plus attitude matching large misalignment transfer alignment model is treated in detail. For the non-linear and non-Gaussian features of the model, an improved particle filer using Gaussian-like sum resample function is proposed by analyzing the time-domain characteristics of the second-order Markov process. Theoretical analysis shows the unity of large misalignment transfer alignment model and small misalignment transfer alignment model. The simulation with small misalignment verifies the validity of the large misalignment transfer alignment model. And the simulation with large misalignment shows that the accuracy of transfer alignment with non-linear and non-Gaussian features is improved by about 40% with small amounts of increment of calculation.

Cite this article

GUO Ziwei , MIAO Lingjuan , ZHAO Hongsong , SHEN Jun . Application of an Improved Gaussian-like Sum Particle Filter to Large Misalignment Transfer Alignment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(1) : 164 -172 . DOI: 10.7527/S1000-6893.2013.0019

References

[1] Baziw J, Leondes C T. In-flight alignment and calibration of inertial measurement unit-Part I: general formulation. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(4): 439-449.

[2] Schneider A M. Kalman filter formulations for transfer alignment of strapdown inertial units. Navigation, 1983, 30(1): 72-89.

[3] Miller R B. A new strapdown attitude algorithm. Journal of Guidance, Control, and Dynamics, 1983, 6(4): 287- 291.

[4] Hao S G, Zhang H Y. Comparison of different transfer alignment equations. Journal of Chinese Inertial Technology, 2003, 11(6): 53-58, 63. (in Chinese) 郝曙光, 张洪钺.几种传递对准方程的比较研究. 中国惯性技术学报, 2003, 11(6): 53-58, 63.

[5] Dai S W, Li J, Dai H D, et al. Study of rapid transfer alignment error model. Journal of Astronautics, 2009, 30(3): 942-946. (in Chinese) 戴邵武, 李娟, 戴洪德, 等. 一种快速传递对准方法的误差模型研究. 宇航学报, 2009, 30(3): 942-946.

[6] Guo Z W, Miao L J, Shen J. A more accurate velocity plus attitude matching transfer alignment with lever-arm compensation term model. Journal of Astronautics, 2011, 32(11): 2357-2364. (in Chinese) 郭子伟, 缪玲娟, 沈军. 一种更精确的带有杆臂补偿的速度加姿态匹配传递对准模型. 宇航学报, 2011, 32(11): 2357-2364.

[7] Cao J J, Fang J C, Sheng W. A fast in-flight alignment method for MIMU under large attitude errors. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1395-1400. (in Chinese) 曹娟娟, 房建成, 盛蔚. 大失准角下MIMU空中快速对准技术. 航空学报, 2007, 28(6): 1395-1400.

[8] Tan H L, Huang X S, Yue D X. Rapid transfer alignment based on large misalignment SINS error model. Jounal of National University of Defense Technology, 2008, 30(6): 19-23. (in Chinese) 谭红力, 黄新生, 岳冬雪. 捷联惯导大失准角误差模型在快速传递对准中的应用. 国防科技大学学报, 2008, 30(6): 19-23.

[9] Dai H D, Zhou S L, Chen M, et al. Quaternion based nonlinear error model for rapid transfer alignment. Journal of Astronautics, 2010, 31(10): 2328-2334.

[10] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.

[11] Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.

[12] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings F, Radar and Signal Processing, 1993, 140(2): 107-113.

[13] Gordon N, Salmond D, Ewing C. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1434-1443.

[14] MacCormick J, Blake A. A probabilistic exclusion principle for tracking multiple objects. International Journal of Computer Vision, 2000, 39(1): 57-71.

[15] Crisan D, Del Moral P, Lyons T. Discrete filtering using branching and interacting particle systems. Markov Processes and Related Fields, 1999, 5: 293-318.

[16] Giremus A, Tourneret J Y, Calmettes V. A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements. IEEE Transactions on Signal Processing, 2007, 55(4): 1275-1285.

[17] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208.

[18] Wang F S, Lin Y J. Improving particle filter with a new sampling strategy. 4th International Conference on Computer Science & Education, 2009: 408-412.

[19] Li Z Y, Qin H L. Application of improved particle filter in GPS system. Computer Engineering and Design, 2010, 31(11): 2523-2526. (in Chinese) 李子昱, 秦红磊. 改进重采样粒子滤波算法在GPS中的应用. 计算机工程与设计, 2010, 31(11): 2523-2526.

[20] Pan Q, Yang F, Ye L, et al. Survey of a kind of nonlinear filters—UKF. Control and Decision, 1995, 20(5): 481-494. (in Chinese) 潘泉, 杨峰, 叶亮, 等. 一类非线性滤波器——UKF综述. 控制与决策, 2005, 20(5): 481-494.

[21] Zhu Z Y. The particle filter algorithm and its application. Beijing: Science Press, 2010. (in Chinese) 朱志宇. 粒子滤波算法及其应用.北京: 科学出版社, 2010.

[22] Wu Q. The principles of automatic control. Beijing: Tsinghua University Press, 2001. (in Chinese) 吴麒. 自动控制原理.北京: 清华大学出版社, 2001.

[23] Guo S L. Stochastic control. Beijing: Tsinghua University Press, 2000. (in Chinese) 郭尚来. 随机控制. 北京: 清华大学出版社, 2000.

Outlines

/