The voice signals in a cockpit voice recorder(CVR)are complex, non-stationary, and exist in a wide frequency range. By using Fourier transform and wavelet packet transform for the fifteen kinds of signals in a CVR, Mel frequency cepstrum coefficient (MFCC) and wavelet packet coefficient (WPC) are extracted as the initial characteristic samples. The characteristic vectors are determined by compression of the MFCC and WPC samples using a geometric distance classification criterion. A fuzzy support vector machine (FSVM) is designed to handle the imbalanced sample classification in the CVR, in which two different fuzzy-membership values in relation to the imbalanced samples are calculated by the extracted samples in each voice signal. The above method can improve the recognition performance of the voice signals with imbalanced samples in the presence of outliers and noise. The experimental results show that it is obviously superior to the conventional support vector machine (SVM) and FSVM with a 98.33% recognition rate.
YANG Lin
,
WANG Congqing
,
JIANG Longsheng
. Signal Recognition of Imbalanced Samples for CVR Based on Fuzzy SVM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012
, (3)
: 544
-553
.
DOI: CNKI:11-1929/V.20111116.1007.001
[1] Grossi D R. Aviation recorder overview. NTSB Journal of Accident Investigation, 2006, 2(1): 31-42.
[2] Cheng D L, Yi C J, Yao H Y, et al. Initial study on airplane cockpit voice recorder (CVR)' sound information identification methods. Noise and Vibration Control, 2006, 6(3): 81-84. (in Chinese) 程道来, 仪垂杰, 姚红宇, 等. 飞机舱音记录器声信息识别方法的初步研究. 噪声与振动控制, 2006, 6(3): 81-84.
[3] Li X R, Du J, Zhang P. Cockpit voice system and its applications Beijing: National Defense Industry Press, 2010: 107-108. (in Chinese) 李学仁, 杜军, 张鹏. 飞机舱音系统及其应用技术. 北京: 国防工业出版社, 2010: 107-108.
[4] Yang L, Wang C Q, Wang Z G, et al. Blind separation performance of non-voice acoustic signal for CVR. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(2): 185-190. (in Chinese) 杨琳, 王从庆, 王芝刚, 等. 飞机舱音记录器非话语信号盲分离性能. 南京航空航天大学学报, 2010, 42(2): 185-190.
[5] Cheng D L, Yi C J, Guo H R, et al. Wavelet analysis on the voice and switch sound recorded by airplane cockpit voice recorder. Computer Engineering and Applications, 2006, 42(25): 187-196. (in Chinese) 程道来, 仪垂杰, 郭海荣, 等.飞机舱音记录器中话语声和开关声小波分析. 计算机工程与应用, 2006, 42(25): 187-196.
[6] Cheng H B, Lei M, Li X R, et al. Robust speech endpoint detection in aircraft cockpit voice recorder information. Journal of Data Acquisition & Processing, 2010, 25(2): 223-227. (in Chinese) 程洪炳, 雷鸣, 李学仁, 等.飞机舱音信息鲁棒语音端点检测. 数据采集与处理, 2010, 25(2): 223-227.
[7] Yi C J, Cheng D L, Guo J X, et al. Analyses on characteristic frequencies of background sound in cockpit of airplane based on different methods. Journal of Vibration and Shock, 2007, 26(8): 109-111. (in Chinese) 仪垂杰, 程道来, 郭健翔, 等. 基于不同方法的飞机舱音背景声频谱特征的获取与分析. 振动与冲击, 2007, 26(8): 109-111.
[8] Cheng D L, Yi C J, Yao H Y. Identification and characteristics analysis for airplane overspeed audio frequency warning signal. Journal of Harbin Institute of Technology, 2009, 41(12): 216-218. (in Chinese) 程道来, 仪垂杰, 姚红宇. 飞机超速音频警告信号的提取与特征分析. 哈尔滨工业大学学报, 2009, 41(12): 216-218.
[9] Lu J, Chen Y S, Sun Z X, et al. Automatic audio classification by using hidden Markov model. Journal of Software, 2002, 13(8): 1593-1597. (in Chinese) 卢坚, 陈毅松, 孙正兴, 等. 基于隐马尔可夫模型的音频自动分类. 软件学报, 2002, 13(8): 1593-1597.
[10] Lin C F, Wang S D. Fuzzy support vector machines. IEEE Transactions on Neural Network, 2002, 13(2): 464-471.
[11] Jiang L S, Wang C Q. Based on MFCC and wavelet packet for aircraft cockpit voice feature extraction. CGNCC2010. 2010: 1032-1037. (in Chinese) 姜龙生, 王从庆. 基于MFCC和小波包变换的飞机舱音特征提取. 2010年中国导航、制导与控制学术会议. 2010: 1032-1037.
[12] Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(1): 60-67.
[13] Jiang C S, Wang C Q, Wei H K, et al. Intelligent control and application.Beijing: Science Press, 2007: 75-76. (in Chinese) 姜长生, 王从庆. 魏海坤, 等. 智能控制与应用. 北京: 科学出版社, 2007: 75-76.
[14] Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines. Proceedings of the International Joint Conference on AI. 1999: 55-60.
[15] Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets. Proceedings of the 15th European Conference on Machine Learning. 2004: 39-50.