A novel three-dimensional (3D) guidance law is proposed for a reentry vehicle with impact angle constraints. To make the circular guidance more applicable, two deviation variables are defined. Then a closed-loop modification method is presented for the mission. Furthermore, a 3D closed-loop circular guidance law (3CCGL) for varying velocities is derived by solving the dynamical equations of the reentry vehicle. The simulation results demonstrate that the 3CCGL can assure the reentry vehicle to impact the target accurately from a specified direction. Compared with another law from the literature, the proposed guidance law is shown to perform favorably with shorter path length, larger terminal velocity and great improvement in the terminal maneuverability of the reentry vehicle in a large-angle turning engagement scenario.
HU Xijing
,
HUANG Xuemei
. Three-dimensional Circular Guidance Law with Impact Angle Constraints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012
, (3)
: 508
-519
.
DOI: CNKI:11-1929/V.20111011.1411.003
[1] Hu Z D, Guo C F, Cai H. Integrated guidance law of reentry maneuvering warhead with terminal angular constraint. Journal of National University of Defense Technology, 2008, 30(3): 21-26. (in Chinese) 胡正东, 郭才发, 蔡洪. 带落角约束的再入机动弹头的复合导引律. 国防科技大学学报, 2008, 30(3): 21-26.
[2] Lu P, Doman D B, Schierman J D. Adaptive terminal guidance for hypervelocity impact in specified direction. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 269-278.
[3] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1817-1822.
[4] Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationary nonmaneuvering targets. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.
[5] Chen X L, Hua W H. Ground target interception proportional navigation law with terminal constraints. Journal of Ballistics, 2010, 22(2): 15-18. (in Chinese) 陈兴林, 花文华. 具有终端约束的地面目标拦截比例导引. 弹道学报, 2010, 22(2): 15-18.
[6] Lee Y I, Ryoo C K, Kim E. Optimal guidance with constraints on impact angle and terminal acceleration. AIAA-2003-5795, 2003.
[7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[8] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
[9] Shaferman V, Shima T. Linear quadratic differential games guidance law for imposing a terminal intercept angle. AIAA-2008-7302, 2008.
[10] Shaferman V, Shima T. Linear quadratic guidance laws for imposing a terminal intercept angle. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1400-1412.
[11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 261-268.
[12] Han D P, Sun W M, Zheng Z Q, et al. A new 3D guidance law based on Lie-group method. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 468-475. (in Chinese) 韩大鹏, 孙未蒙, 郑志强, 等. 一种基于李群方法的新型三维制导律设计. 航空学报, 2009, 30(3): 468-475.
[13] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode. AIAA-2009-5897, 2009.
[14] Ratnoo A, Ghose D. SDRE based guidance law for impact angle constrained trajectories. AIAA-2007-6539, 2007.
[15] Ratnoo A, Ghose D. State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.
[16] Manchester I R, Savkin A V. Circular navigation missile guidance with incomplete information and uncertain autopilot model. AIAA-2003-5448, 2003.
[17] Manchester I R, Savkin A V. Circular navigation guidance law for precision missile/target engagements. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 314-320.
[18] Lam V C. Circular guidance laws with and without terminal velocity direction constraints. AIAA-2008-7304, 2008.