Traditional central differential discrete mixed Fourier transform (DMFT) algorithms suffer from numerical oscillation when computing the mixed dynamic impedance boundary conditions, and from increased errors for neglecting backward-propagation and diffraction waves. A recursive two-way DMFT (TW-DMFT) algorithm is proposed in this paper using a mixed forward-backward difference method which is based on the traditional algorithm. The first order forward-backward difference equation is used to substitute for traditional central difference equation to fit the impedance boundary condition,and the recursively two-way parabolic equation model is used to improve the traditional one-way models. Compared with the traditional algorithm and geometrical theory of diffraction (GTD), the stability and accuracy which make up the deficiency and applicability of the traditional algorithm are improved by the TW-DMFT algorithm, which are verified by the simulation results that calculated in complex environments including single knife-edges and real terrain for different boundaries and media.
LI Dexin, YANG Rijie, WANG Yuancheng, ZHANG Dan
. Study on Two-way DMFT Algorithm of Predicting Radio Propagation Characteristics in Irregular Terrain Environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012
, 33(2)
: 297
-305
.
DOI: CNKI:11-1929/V.20110712.0905.004
[1] Levy M. Parabolic equation methods for electromagnetic wave propagation. London: IEE Press, 2000: 15-43.
[2] Hu H B, Chen J Z, Jiang Y J. Method of radar survey scope calculation based on the Globe map. Chinese Journal of Radio Science, 2010, 25(1): 156-160. (in Chinese) 胡绘斌, 陈建忠, 姜永金. 一种基于Globe地图的雷达探测范围计算方法. 电波科学学报, 2010, 25(1): 156-160.
[3] Wang Z G, Wang X P, Bao Y D, et al. Shape modification by beam model in FEM. Chinese Journal of Aeronautics, 2010, 23(2): 246-251.
[4] Wang L F, Wu Z, Wu Z Y. Fast calculation of wide angle RCS pattern of 3D object based on Hermite interpolation technique and FDTD method. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 924-930. (in Chinese) 王立峰, 武哲, 吴泽艳. Hermite插值结合FDTD法快速计算三维目标宽角度RCS. 航空学报, 2008, 29(4): 924-930.
[5] Zhang A P, Chen G P. Structural finite element model updating based on hybrid artificial fish swarm algorithm. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 940-945. (in Chinese) 张安平, 陈国平. 基于混合人工鱼群算法的结构有限元模型修正. 航空学报, 2010, 31(5): 940-945.
[6] Benhmammouch O, Caouren N, Khenchaf A. Modeling of roughness effects on electromagnetic waves propagation above sea surface using 3D parabolic equation. IEEE International Geoscience and Remote Sensing Symposium. 2009, 2: 817-820.
[7] Coleman C J. An FFT-based Kirchhoff integral technique for the simulation of radio waves in complex environments. Radio Science, 2010, 45(2): 1-14.
[8] Dockery G D, Kuttler J R. An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation. IEEE Transactions on Antennas and Propagation, 1996, 44(12): 1592-1599.
[9] Kuttler J R, Janaswamy J. Improved Fourier transform methods for solving the parabolic wave equation. Radio Science, 2002, 37(2): 1-11.
[10] Apaydin G, Sevgi L. Numerical investigations of and path loss predictions for surface wave propagation over sea paths including hilly island transitions. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1302-1314.
[11] Kawano T, Goto K, Ishihara T. Analysis of ground wave propagation over land-to-sea mixed-path by using equivalent current source on aperture plane. IEICE Transactions on Electronics, 2009, E92-C(1): 46-54.
[12] Apaydin G, Sevgi L. FEM-based surface wave multimixed-path propagator and path loss predictions. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1010-1013.
[13] Feit M D, Fleck J A, Jr. Light propagation in gradedindex optical fibers. Applied Optics, 1978, 17(24): 3990-3998.
[14] Kutter R, Dockey G. Theoretical description of parabolic approximation Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Science, 1991, 26(2): 381-393.
[15] Xiong H. Radio propagation. Beijing: Publishing House of Electronics Industry, 2000: 403-413. (in Chinese) 熊皓. 无线电波传播. 北京: 电子工业出版社, 2000: 403-413.