Review

Investigation of the Present Status of Research on Bird Impacting on Commercial Airplanes

Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2011-06-09

  Revised date: 2011-08-08

  Online published: 2012-02-24

Abstract

Bird impact accidents pose one of the biggest risks to civil aviation, which consequently become one of the focuses of research. An investigation of the status of bird impacting on commercial airplanes is presented in this paper.The losses caused by bird impact accidents in recent years are enumerated and the regulations about bird impacting on commercial airplanes in different countries are reviewed. The three aspects of theoretical investigation,numerical simulation and experimental study for bird impact are introduced in detail and a number of designs of aeronautical structures against bird impact accidents in recent years are presented. Finally, prospects in future bird impact research are proposed.

Cite this article

LI Yulong, SHI Xiaopeng . Investigation of the Present Status of Research on Bird Impacting on Commercial Airplanes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012 , 33(2) : 189 -198 . DOI: CNKI:11-1929/V.20111031.1057.005

References

[1] Zhang B G, Yue J H, Wang S H. Bird-strike: a hard nut for 20th century. Martial Historical Facts, 2004(4): 15-19. (in Chinese) 张北光, 岳建华, 王山河. 鸟撞飞机: 世纪难题. 军事史林, 2004(4): 15-19.

[2] Dolbeer R A, Wright S E, Weller J, et al. Wildlife strike to civil aircraft in the United States 1990-2008. FAA National Wildlife Strike Database Serial Report No.15, Washington: FAA, 2009.

[3] Bird strikes to civil aircraft in China (2009). Center of Aviation Safety Technology, CAAC, 2010. (in Chinese) 2009年中国民航鸟击航空器事件数据分析报告. 中国民用航空总局航空安全技术中心, 2010.

[4] FAR-25 Electronic code of federal regulations. FAA, 2010.

[5] CS-25 Certification specifications for large aeroplanes CS-25. EASA, 2007.

[6] CCAR-25-R3 China civil aviation regulations: 25—airworthiness standard of transport aircraft. CAAC, 2001. (in Chinese) CCAR-25-R3 中国民用航空规章:第25部——运输类飞机适航标准. 中国民用航空总局, 2001.

[7] Wilbeck J S, Reimane W. Impact behaviour of low strength projectiles. AFML-TR-77-134, 1978.

[8] Wilbeck J S, Barber J. Bird impact loading. The Shock and Vibration Bulletin, 1978, 48(2): 115-122.

[9] Yin J, Li Q H. Selection of methods and parameters of calculating nonlinear transient response blade. Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 27(4): 571-576. (in Chinese) 尹晶, 李清红. 叶片非线性瞬态响应计算方法与参数选择. 南京航空航天大学学报, 1995, 27(4): 571-576.

[10] Chen W, Yin J, Song Y D, et al, Numerical analysis of transient response of plates due to oblique impact loads. Transactions of Nanjing University of Aeronautics & Astronautics. 1996, 28(6): 854-857. (in Chinese) 陈伟, 尹晶, 宋迎东, 等. 平板叶片斜撞击瞬态响应的计算分析. 南京航空航天大学学报, 1996, 28(6): 854-857.

[11] Chen W, Song Y D, Yin J, et al. Numerical analysis of blade transient response to bird impact under centrifugal loading. Transactions of Nanjing University of Aeronautics & Astronautics, 1997, 12(2): 122-126. (in Chinese) 陈伟, 宋迎东, 尹晶, 等. 离心载荷作用下平板叶片鸟撞击响应计算. 南京航空航天大学学报, 1997, 12(2): 122-126.

[12] Chen W, Guan Y P, Gao D P. Numerical simulation of the transient response of blade due to bird impact. Acta Aeronautica et Astronautica Sinica, 2003, 24(16): 531-533. (in Chinese) 陈伟, 关玉璞, 高德平. 发动机叶片鸟撞击瞬态响应的数值模拟. 航空学报, 2003, 24(16): 531-533.

[13] Zhu S H, Tong M B, Wang Y Q. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. AIAA-2009-2575, 2009.

[14] Smojver I, Ivancevic D. Numerical simulation of bird strike damage prediction in airplane flap structure. Composite Structures, 2010, 92(9): 2016-2026.

[15] Goyal V K, Huertas C A, Borrero J R, et al. Robust bird-strike modeling based on ALE formulation using LS-DYNA. AIAA-2006-1759, 2006.

[16] Hanssen A G, Girardet Y, Olovsson L, et al. Numerical model for bird strike of aluminium foam-based sandwich panels. International Journal of Impact Engineering, 2006, 32(7): 1127-1144.

[17] Wang X J, Feng Z Z, Wang F S, et al. Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation. Chinese Journal of Aeronautics, 2007, 20(6): 511-517.

[18] Audic S, Berthillier M, Bonini J, et al. Prediction of bird impact in hollow fan blades. AIAA-2000-3201, 2000.

[19] Georgiadis S, Gunnion A J, Thomson R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Composite Structures, 2008, 86(1-3): 258-268.

[20] Wu L, Guo Y N, Li Y L. Bird strike simulation on sandwich composite structure of aircraft radome. Explosion and Shock Waves, 2009, 29(6): 642-647. (in Chinese) 毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析. 爆炸与冲击, 2009, 29(6): 642-647.

[21] Zhao N, Xue P, Li Y L. Study on dynamic response of honeycomb sandwich panels subjected to bird strike. Acta Armamentarii, 2010, 31(1): 184-189. (in Chinese) 赵楠, 薛璞, 李玉龙. 鸟体撞击蜂窝夹层板的动力响应分析研究. 兵工学报, 2010, 31(1): 184-189.

[22] Goyal V K, Huertas C A, Borrero J R, et al. Robust bird-strike modeling based on SPH formulation using LS-DYNA. AIAA-2006-1878, 2006.

[23] Meguid S, Mao R, Ng T. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. International Journal of Impact Engineering 2008, 35(6): 487-498.

[24] Nizampatnam L S, Horn W J. Investigation of equation of state models for predicting bird impact loads. AIAA-2008-682, 2008.

[25] Nizampatnam L S, Horn W J. Investigation of material density variations for predicting bird impact loads. AIAA-2008-2252, 2008.

[26] Zhang Y K, Li Y L. Back analysis of bird material parameter. Aeronautical Computing Technique, 2007, 37(6): 1-4. (in Chinese) 张永康, 李玉龙. 确定鸟体材料参数的反演方法. 航空计算技术, 2007, 37(6): 1-4.

[27] Zhang Y K, Li Y L. The inversion of bird's material parameters using improved BP neural network. Machinery Design & Manufacture, 2010(2): 51-53. (in Chinese) 张永康, 李玉龙. 基于改进BP神经网络的鸟体材料参数反演. 机械设计与制造, 2010(2): 51-53.

[28] Liu J, Li Y L, Guo W G, et al. Parameters inversion on bird constitutive model Part Ⅰ: study on experiment of bird striking on plate. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 802-811. (in Chinese) 刘军, 李玉龙, 郭伟国, 等. 鸟体本构模型参数反演Ⅰ: 鸟撞平板试验研究. 航空学报, 2011, 32(5): 802-811.

[29] Liu J, Li Y L, Shi X P, et al. Parameters inversion on bird constitutive model Part Ⅱ: study on model parameters inversion. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 812-821. (in Chinese) 刘军, 李玉龙, 石霄鹏, 等. 鸟体本构模型参数反演Ⅱ: 模型参数反演研究. 航空学报, 2011, 32(5): 812-821.

[30] Wilbeck J S, Rand J L. The development of substitute bird model. ASME Journal of Engineering for Power, 1981, 103(6): 725-730.

[31] Budgey R. The development of artificial bird designs for bird strike resistence testing. Amsterdam: IBSC25/WP-IE3, 2000: 543-550.

[32] Lavoie M A, Gakwaya A, Ensan M N, et al. Bird's substitute tests results and evaluation of available numerical methods. International Journal of Impact Engineering, 2009, 36(10-11): 1276-1287.

[33] Besse J, Fuertes A. Behavior of aramid epoxy composite structures to bird impact. Copenhagen: Bird Strike Committee Europe (BSCE) 18th Meeting. 1986.

[34] Airoldi A, Tagliapietra D. Bird impact simulation against a hybrid composite and metallic vertical stabilizer. AIAA-2001-1390, 2001.

[35] Reglero J, Rodríguez-Pérez M, Solórzano E, et al. Aluminium foams as a filler for leading edges: improvements in the mechanical behaviour under bird strike impact tests. Materials and Design, 2011, 32(2): 907-910.

[36] Asundi A, Choi A. Fiber metal laminates: an advanced material for future aircraft. Journal of Materials Processing Technology, 1997, 63(1-3): 384-394.

[37] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—Part 1: material modelling. Applied Composite Materials, 2004, 11(5): 295-315.

[38] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—Part 2:modelling of impact with SPH bird model. Applied Composite Materials, 2004, 11(5): 317-340.

[39] Chen Y F, Li Y L, Liu J, et al. Study of bird strike on an improved leading edge structure. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787. (in Chinese) 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究. 航空学报, 2010, 31(9): 1781-1787.

[40] Guida M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing. Composite Structures, 2011, 93(3): 1060-1071.

[41] Kermanidis T H, Labeas G, Sunaric M, et al. Development and validation of a novel bird strike resistant composite leading edge structure. Applied Composite Materials, 2005, 12(6): 327-353.

[42] Kermanidis T H, Labeas G, Sunaric M, et al. Bird strike simulation on a novel composite leading edge design. International Journal of Crashworthiness, 2006, 11(3): 189-201.

[43] Zhang Y K, Li Y L. Analysis of the bird impact resistance of different beam-edge structures. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(12): 1595-1599. (in Chinese) 张永康, 李玉龙. 不同构型梁-缘结构抗鸟撞性能分析. 机械科学与技术, 2007, 26(12): 1595-1599.
Outlines

/