Biaxial tensile tests of directionally solidified superalloy IC10 are carried out using cruciform specimens. The specimens are deformed under linear loading path on a Zwick/Roell Z010 biaxial tensile testing machine. The maximum equivalent strain attained is 0.02. The loading directions remain coaxial with the plastic orthotropy throughout every experiment. Contours of plastic work in the biaxial stress space are successfully determined and compared with the yield loci calculated from several existing yield criteria. It is found that the yield locus of superalloy IC10 is asymmetric about the balanced biaxial tension line, which indicates strong plastic anisotropy of the material. Von Mises yield criterion fails to describe the plastic anisotropy of IC10 since it contains only one material constant. Hill's quadratic yield criterion underestimates the measured work contours in the neighborhood of balanced biaxial tension. Logan & Hosford's yield criterion underestimates severely the measured work contours from the balanced biaxial tension to transverse uniaxial tension. Banabic-Balan's yield criterion and Barlat's yield criterion fit the data points well, which indicates it can describe the yielding behavior of superalloy IC10 under biaxial tension with good accuracy.
[1] Zhao X H, Huang Z H, Tan Y N, et al. New Ni3Al-based directionally-solidified superalloy IC10. Journal of Aeronautical Materials, 2006, 26(3): 20-24. (in Chinese) 赵希宏, 黄朝晖, 谭永宁, 等. 新型Ni3Al基定向高温合金IC10. 航空材料学报, 2006, 26(3): 20-24.
[2] Zhang H J, Wen W D, Cui H T, et al. Constitutive analysis of alloy IC10 at different temperatures. Acta Aeronautica et Astronuatica Sinica, 2008, 29(2): 499-504. (in Chinese) 张宏建, 温卫东, 崔海涛, 等. 不同温度下IC10合金的本构关系. 航空学报, 2008, 29(2): 499-504.
[3] Zhao X H, Sun Y J, Huang Z H, et al. Creep deformation mechanism of directionally solidified Ni3Al-base superalloy IC10 at 760 ℃. Journal of Materials Engneering, 2009(1): 1-3, 9. (in Chinese) 赵希宏, 孙跃军, 黄朝晖, 等. 定向凝固 Ni3Al基高温金 IC10 的760 ℃ 蠕变机理. 材料工程, 2009(1): 1-3,9.
[4] Wu X M, He S M, Li J P, et al. Effect of EB-PVD thermal barrier coating on mechanical properties of IC10 alloy. Journal of Aeronautical Materials, 2009, 29(6): 77-80. (in Chinese) 吴小梅, 贺世美, 李建平, 等. EB-PVD热障涂层对 IC10合金力学性能的影响. 航空材料学报,2009, 29(6): 77-80.
[5] Hill R, Hecker S S, Stout M G. An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. International Journal of Solids Structure, 1994, 31(21): 2999-3021.
[6] Kuwabara T, Yoshida K, Narihara K, et al. Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. International Journal of Plasticity, 2005, 21(1): 101-117.
[7] Zhang Z H, Pang B J, Zhao S S, et al. Experimental research on the yield and strength of magnesium alloy under the complex stress condition. Acta Mechanica Solida Sinica, 1996, 17(2): 163-166. (in Chinese) 张泽华, 庞宝君, 赵树山, 等. 镁合金屈服与强度的试验研究. 固体力学学报,1996,17(2): 163-166.
[8] Kuwabara T, Ikeda S, Kuroda K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. Journal of Materials Processing Technology, 1998, 80-81: 517-523.
[9] Kuwabara T, van Bael A, Iizuka E. Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values. Acta Materialia, 2002, 50(14): 3717-3729.
[10] Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. International Journal of Plasticity, 2007, 23(3): 385-419.
[11] Geiger M, Merklein M, Huntter W, et al. Experimental determination of yield loci for magnesium alloy AZ31 under biaxial tensile stress conditions at elevated temperatures. Product Engineering Research Development, 2008, 2(3): 303-310.
[12] Lin S B, Ding J L. Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen. International Journal of Plasticity, 1995, 11(5): 583-604.
[13] Wu X D, Wan M, Zhou X B. The yield loci of anisotropic sheet metals. Materials Science & Technology, 2004, 12(4): 391-393, 397. (in Chinese) 吴向东, 万敏, 周贤宾. 各向异性板料屈服轨迹的研究. 材料科学与工艺, 2004, 12(4): 391-393,397.
[14] Wei L C, Fan J C, Luo R A, et al. Biaxial mechanical test of ecological concrete. Journal of Shanghai University: Natural Science, 2006, 12(6): 647-650,655. (in Chinese). 魏林春, 樊建超, 罗仁安, 等. 绿化生态混凝土双向力学性能实验研究. 上海大学学报: 自然科学版, 2006, 12(6): 647-650, 655.
[15] Demmerlea S, Boehler J P. Optimal design of bi-axial tensile cruciform specimens. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 143-181.
[16] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London: Series A, Mathematical and Physical Science, 1948, 193(1033): 281-297.
[17] Logan R W, Hosford W F. Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide. International Journal of Mechanical Sciences, 1980, 22(7): 419-430.
[18] Banabic D, Balan T, Pohlandt K. Analytical and experimental investigation on anisotropic yield criteria. Geiger M. Advanced Technology of Plasticity 1999, Proceedings of 6th ICTP. 1999: 1739-1764.
[19] Barlat F, Lian J. Plastic behavior and stretchability of sheet metals. Part 1: a yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 1989, 5(1): 51-56.