To describe the centralized level of the stress root mean square (RMS) around a notch, this paper proposes a definition and calculation formula of the stress mean square concentration factor for notched specimens under dynamic excitation. A calculation formula for notch fatigue factor is presented based on the basic fatigue mechanism of structures and a consideration of the distribution characteristics of the stress root mean square in dangerous regions around a notch. Consequently the nominal stress approach for the life prediction of notched specimens under vibration loading is obtained. The results of three typical examples show that the method proposed in this paper can predict the vibration fatigue life of notched specimens well.
LI Deyong, YAO Weixing
. Nominal Stress Approach for Life Prediction of Notched Specimens Under Vibration Loading[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(11)
: 2036
-2041
.
DOI: CNKI:11-1929/V.20110419.1703.007
[1] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003: 1-6. Yao Weixing. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003: 1-6. (in Chinese)
[2] 姚起杭, 姚军. 结构振动疲劳问题的特点与分析方法[J]. 机械科学与技术, 2000, 19(S): 56-58. Yao Qihang, Yao Jun. The behavior and analysis of structure vibration fatigue[J]. Mechanical Science and Technology, 2000, 19(S): 56-58. (in Chinese)
[3] Nieslony A, Macha E. Spectral method in multiaxial random fatigue[M]. Berlin: Springer, 2007: 37-47.
[4] Figwer J. A new method of random time-series simulation[J]. Simulation Practice and Theory, 1997, 5(3): 217-234.
[5] Hu B, Schiehlen W. On the simulation of stochastic processes by spectral representation[J]. Probabilistic Engineering Mechanics, 1997, 12(2): 105-113.
[6] Powell D C, Connell J R. Review of wind simulation methods for horizontal-axis wind turbine analysis. Richland, WA: Pacific Northwest Lab. PNL 5903, 1986.
[7] Zhang Y L, Zhang J F. Numerical simulation of stochastic road process using white noise filtration[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 363-372.
[8] Rice S O. Mathematical analysis of random noise[J]. Bell System Technical Journal, 1944, 23(3): 282-332.
[9] Dirlik T. Application of computers in fatigue analysis. Coventry: Department of Engineering, University of Warwick, 1985.
[10] Zhao W, Baker M J. On the probability density function of rain flow stress range for stationary Gaussian processes[J]. International Journal of Fatigue, 1992, 14(2): 121-135.
[11] 王明珠,姚卫星. 随机振动载荷下缺口件疲劳寿命分析的频域法[J]. 南京航空航天大学学报,2008,40(4): 489-492. Wang Mingzhu, Yao Weixing. Frequency domain method for fatigue life analysis on notched specimens under random vibration loading[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4): 489-492. (in Chinese)
[12] 王明珠,姚卫星. 双峰应力谱密度雨流幅值分布[J]. 航空学报, 2009, 30(9): 1666-1671. Wang Mingzhu, Yao Weixing. Rainflow amplitude distribution of bi-modal stress power spectral density[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1666-1671. (in Chinese)
[13] Yao W X, Xia K Q, Gu Y. On the fatigue notch factor[J]. International Journal of Fatigue, 1995, 17(4): 245-251.
[14] Buch A. Fatigue strength calculation[M]. Switzerland: Trans Tech Publications, 1988: 67-76.
[15] 安刚, 龚鑫茂. 随机振动环境下结构的疲劳失效分析[J]. 机械科学与技术, 2000, 19(S1): 40-42. An Gang, Gong Xinmao. Fatigue failure analysis of structures under random vibration environment[J]. Mechanical Science and Technology, 2000, 19(S1): 40-42. (in Chinese)