Both for the cases when a failure field and a super-ellipsoid convex set interfere or don't interfere with each other, there exists insufficiency of both the super-ellipsoid convex sets non-probabilistic reliability index and non-probabilistic reliability degree index. In view of this, this paper presents a definition of reliability comprehensive index based on multi-ellipsoid convex sets by combining the above two definition indexes. The comprehensive index is calculated by the combined method of modified limit step iteration algorithm (MLSA) and the Monte-Carlo method. The modified limit step length iteration algorithm is presented based on the limit step length iteration algorithm. A new merit function is proposed based on the extreme value condition of the extensive Lagrange function. Golden section method is introduced for one dimension search of the step length and convergence is accelerated. Numerical examples show the validity of the iteration results of the multi-ellipsoid convex sets non-probabilistic reliability index obtained by MLSA, and the algorithm also exhibits better convergence. The structural buckling non-probabilistic reliability degree of a supercavitating projectile is evaluated by the super-ellipsoid convex sets reliability comprehensive index with more satisfactory results.
ZHOU Ling, AN Weiguang, JIA Hongguang
. Definition and Solution of Reliability Comprehensive Index of Super-ellipsoid Convex Set[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(11)
: 2025
-2035
.
DOI: CNKI:11-1929/V.20110726.1649.001
[1] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structure: from A. M. Freudenthal's criticisms to modern convex modeling[J]. Computers and Structures, 1995, 56(6): 871-895.
[2] Ben-Haim Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4): 227-245.
[3] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety, 1995, 17(2): 91-109.
[4] 邱志平, 陈山奇, 王晓军. 结构非概率鲁棒可靠性准则[J]. 计算力学学报, 2004, 21(1): 1-6. Qiu Zhiping, Chen Shanqi, Wang Xiaojun. Criterion of the non-probabilistic robust reliability for structures[J]. Chinese Journal of Computational Mechanics, 2004, 21(1): 1-6. (in Chinese)
[5] Elishakoff I. Discussion on: a non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17(3): 195-199.
[6] 吕震宙, 冯蕴雯, 岳珠峰. 改进的区间截断法及基于区间分析的非概率可靠性分析方法[J]. 计算力学学报, 2002, 19(3): 260-264. Lu Zhenzhou, Feng Yunwen, Yue Zhufeng. A advanced interval-truncation approach and non-probabilistic reliability analysis based on interval analysis[J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 260-264. (in Chinese)
[7] 郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56-60. Guo Shuxiang, Lu Zhenzhou, Feng Yuansheng. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56-60. (in Chinese)
[8] 曹洪钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报, 2005, 22(5): 546-549. Cao Hongjun, Duan Baoyan. An approach on the non-probabilistic reliability of structures based on uncertainty convex model[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 546-549. (in Chinese)
[9] 王晓军, 邱志平, 武哲. 结构非概率集合可靠性模型[J]. 力学学报, 2007, 39(5): 641-646. Wang Xiaojun, Qiu Zhiping, Wu Zhe. Non-probabilistic set based model for structural reliability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 641-646. (in Chinese)
[10] 乔心州, 仇原鹰, 孔宪光. 一种基于椭球凸集的结构非概率可靠性模型[J]. 工程力学, 2009, 26(11): 203-208. Qiao Xinzhou, Qiu Yuanying, Kong Xianguang. A non-probabilistic model of structural reliability based on ellipsoidal convex model[J]. Engineering Mechanics, 2009, 26(11): 203-208. (in Chinese)
[11] 江涛, 陈建军, 姜培刚, 等. 区间模型非概率可靠性指标的一维优化算法[J]. 工程力学, 2007, 24(7): 23-27. Jiang Tao, Chen Jianjun, Jiang Peigang, et al. A one-dimensional optimization algorithm for non-probabilistic reliability index[J]. Engineering Mechanics, 2007, 24(7): 23-27. (in Chinese)
[12] 郭书祥, 张陵, 李颍. 结构非概率可靠性指标的求解方法[J]. 计算力学学报, 2005, 22(2): 227-231. Guo Shuxiang, Zhang Ling, Li Ying. Procedures for computing the non-probabilistic reliability index of uncertain structures[J]. Chinese Journal of Computational Mechanics, 2005, 22(2): 227-231. (in Chinese)
[13] 罗阳军, 亢战. 超椭球模型下结构非概率可靠性指标的迭代算法[J]. 计算力学学报, 2008, 25(6): 747-752. Luo Yangjun, Kang Zhan. An iteration approach for structural non-probabilistic reliability analysis based on hyper-ellipsoidal models[J]. Chinese Journal of Computational Mechanics, 2008, 25(6): 747-752. (in Chinese)
[14] Kang Z, Luo Y J. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41-44): 3228-3238.
[15] Luo Y J, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model[J]. Computer and Structures, 2009, 87(21-22): 1408-1415.
[16] 贡金鑫. 工程结构可靠度计算方法[M]. 大连: 大连理工大学出版社, 2003: 129-130. Gong Jinxin. Reliability calculation methods of engineering structure[M]. Dalian: Dalian University of Technology Press, 2003: 129-130. (in Chinese)
[17] 周凌. 可靠性算法与超空泡航行体结构屈曲可靠性研究. 哈尔滨: 哈尔滨工程大学航天与建筑工程学院, 2010. Zhou Ling. Reliability algorithms and structural buckling reliability research of supercavitating vehicle. Harbin: College of Aerospace and Civil Engineering, Harbin Engineering University, 2010. (in Chinese)
[18] Liu P L, Der Kiureghian A. Optimization algorithms for structural reliability[J]. Structural Safety, 1991, 9(3): 161-177.
[19] An W G, Zhou L, An H. Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles[J]. Journal of Harbin Institute of Technology: New Series, 2009, 16(4): 561-569.