Articles

Numerical Simulation and Experimental Study of Strain Field for Morphing Wings Based on Distributed Fiber Bragg Grating Sensor Network

Expand
  • 1. MOE Key Laboratory of Flight Vehicle Structural Mechanics and Control, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Qingdao Branch, Naval Aeronautical Engineering Academy, Qingdao 266041, China

Received date: 2010-12-22

  Revised date: 2011-02-21

  Online published: 2011-10-27

Abstract

In different flight postures and flight conditions, the intelligent structure and actuator of a morphing wing may perform dynamic deformation as required by external conditions and control commands, which demonstrates its good aerodynamic property. Due to the complicated and varied conditions of distribution and function of the stress field and the temperature field of the wing body structue, it is necessary to perform a coupling analysis of multi-physical fields to obtain accurate information of the strain distribution of the wing body structure. This paper adopts the COMSOL Multiphysic numerical analysis software to study the stress field and temperature field of a downscaled morphing wing edge model. A distributed optical fiber Bragg grating sensor network is constructed to monitor the strain distribution of the key structural parts. Both simulation and experimental results can reflect accurately the strain variation of the wing body structure under the coupled action of the stress and temperature fields.

Cite this article

XU Haiwei, ZENG Jie, LIANG Dakai, WANG Xiaogang, LIU Hongyue . Numerical Simulation and Experimental Study of Strain Field for Morphing Wings Based on Distributed Fiber Bragg Grating Sensor Network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(10) : 1842 -1850 . DOI: CNKI:11-1929/V.20110610.0902.001

References

[1] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034. Yang Zhichun, Xie Jiang. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034. (in Chinese)

[2] Adam M W, Ephrahim G. Optimization of perching maneuvers through vehicle morphing[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 815- 823.

[3] Schweikhard K A, Richards W L, Theisen J, et al. Flight demonstration of X-33 vehicle health management system componentson the F/A-18 systems research aircraft. NASA-TM-2001-209037, 2001.

[4] 张小跃, 张春熹, 宋凝芳. 基于组合导航技术的光纤捷联系统在线标定[J]. 航空学报, 2008, 29(6): 1657-1659. Zhang Xiaoyue, Zhang Chunxi, Song Ningfang. Online calibration of FOG strapdown system based on integrated navigation technology[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1657-1659. (in Chinese)

[5] 袁慎芳, 邱雷, 王强, 等. 压电-光纤综合结构健康监测系统的研究机验证[J]. 航空学报, 2009, 30(2): 349-356. Yuan Shenfang, Qiu Lei, Wang Qiang, et al. Application research of a hybrid piezoelectric-optic fiber integrated structural health monitoring system[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 349-356. (in Chinese)

[6] Jiang Q, Kang Y S. Highly sensitive FBG temperature measurement based on a wavelength pumped multiplexing filter and two optical channels[J]. Opptoelectronics Letters, 2010, 6(4): 307-309.

[7] Culler A J, McNamara J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(1): 1721-1737.

[8] 奇共金, 雷洪, 景鹏. 基于先进传感器技术的航空材料无损检测进展[J]. 智能检测技术, 2009(4): 51-53. Qi Gongjin, Lei Hong, Jing Peng. Progress of non-destructive testing for aviation materials based on advaned sensor technology[J]. Automatic Testing and Measurement Technology, 2009(4): 51-53. (in Chinese)

[9] Mitschke F. Fiber-optic sensors[M]. Berlin: Heidelberg, 2010: 247-256.

[10] Konrath R. Simultaneous measurements of unsteady aerodynamic loads, flow velocity fields, position and wing deformations of MAVs in plunging motion[J]. Astronautics, 2007, 28(4): 773-778.

[11] 任青梅, 杨志斌, 成竹, 等. 气动加热与结构温度场耦合分析平台研发技术[J]. 强度与环境, 2009, 36(5): 34-38. Ren Qingmei, Yang Zhibin, Cheng Zhu, et al. Development of the platform for analysis coupling aeroheating and structural temperature field[J]. Structure & Environment Engineering, 2009, 36(5): 34-38. (in Chinese)

[12] 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究. 合肥: 中国科学技术大学工程科学学院, 2010. Dong Erbao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Hefei: School of Engineering Science, University of Science and Technology of China, 2010. (in Chinese)

[13] 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4): 773-778. Du Shanyi, Zhang Boming. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics, 2007, 28(4): 773-778. (in Chinese)

[14] 芦吉云, 梁大开, 潘晓文. 基于准分布式光纤光栅传感器的机翼盒段载荷监测[J]. 南京航空航天大学学报,2009, 41(2): 218-221. Lu Jiyun, Liang Dakai, Pan Xiaowen. Load mesurement of wing box based on distributed fiber Bragg grating sensors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(2): 218-221. (in Chinese)

[15] Lavacchi A, Bardi U, Borri C, et al. Cyclic voltammetry simulation at microelectrode arrays with COMSOL Multiphysics[J]. Journal of Applied Electrochemistry, 2009, 39(2): 2159-2163.

[16] Wang M H, Jang L S. A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations[J]. Biosensors and Bioelectronics, 2009, 24(3): 2830-2835.

[17] van Schijndel A W M. Integrated modeling of dynamic heat, air and moisture processes in buildings and systems using SimuLink and COMSOL[J]. Building Simulation, 2009, 2(2): 143-155.

[18] 马玉娥, 孙秦. 动态热力耦合精细积分解法研究[J]. 机械强度, 2007, 29(3): 483-486. Ma Yu'e, Sun Qin. Precise time-integration method for dynamic response of thermo-mechanical coupled problem[J]. Mechanical Strength, 2007, 29(3): 483-486. (in Chinese)

[19] Kays W M, Crawford M E, Weigand B. 对流传热与传质[M]. 赵镇南, 译. 北京: 高等教育出版社, 2007: 8-13. Kays W M, Crawford M E,Weigand B. Convective heat and mass transfer[M]. Zhao Zhennan, translated. Beijing: Higher Education Press, 2007: 8-13. (in Chinese)

[20] 王勖成. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997: 441-461. Wang Xuncheng. Finite element method[M]. Beijing: Tsinghua University Press, 1997: 441-461. (in Chinese)

[21] 黎敏, 廖延彪. 光纤传感器及其应用技术[M]. 武汉: 武汉大学出版社, 2008: 116-121. Li Min, Liao Yanbiao. Optical fiber sensing techniques and application[M]. Wuhan: Wuhan University Press, 2008: 116-121. (in Chinese)

[22] Monner H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science Technology, 2001, 5(7): 445-455.

[23] Hafer X, Sachs G. Flugmechanik: moderne flugzeugentwurfs -und steuerrungskonzepte[M]. New York: Springer-Verlag, 1985: 116-127.
Outlines

/