The orthogonal method and multiple-domain coupling numerical simulation are used to explore the influence of structural parameters on piezoelectric micro synthetic jet velocity. As a precondition the orifice thickness, chamber height and diaphragm thickness are predefined for the sake of micromachining economy. The results show that the orifice width, chamber width and PbZrxTi1-xO3 (PZT) thickness affect the jet velocity seriously. In the range of the test, the jet velocity decreases with increasing orifice width and PZT thickness, or with decreasing chamber width. The PZT width has the least influence on the jet velocity. The research is valuable for structural design optimization of piezoelectric micro synthetic jet actuators. Finally, piezoelectric micro synthetic jet actuators are fabricated with Si micromachining technology based on the above study. Peak jet velocity of 10 m/s is obtained with 30 V and 10 kHz AC electric drive.
SHEN Dandong, MA Binghe, DENG Jinjun, YUAN Weizheng
. Structural Parameters Optimization of Piezoelectric Micro Synthetic Jet Actuators[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(9)
: 1755
-1760
.
DOI: CNKI:11-1929/V.20110225.1654.001
[1] Sefcovic J A, Smith D R. Proportional aerodynamic control of a swept divergent trailing edge wing using synthetic jets. AIAA-2010-92, 2010.
[2] Farnsworth J A N, Vaccaro J C, Amitay M. Active flow control at low angles of attack: stingray unmannedaerial vehicle[J]. AIAA Journal, 2008, 46(10): 2530-2544.
[3] Shea P R, Smith D R. Aerodynamic control of a rectangular wing using gurney flaps and synthetic jet. AIAA-2009-886, 2009.
[4] Slipher C A, Hubbard J E. Exploitation of higher order membrane modes for improved synthetic jet performance[J]. AIAA Journal, 2009, 47(6): 1388-1407.
[5] Kiddy J, Chen P, Niemczuk J. Active flow control using microelectromechanical systems. AIAA-2000-1561, 2000.
[6] Tang H, Zhong S. Modelling of the characteristics of synthetic jet actuators. AIAA-2005-4748, 2005.
[7] Gomes L D, Crowther W J, Wood N J. Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications: effect of chamber and orifice depth on actuator peak velocity. AIAA-2006-2859, 2006.
[8] Gallas Q, Holman R, Nishida T, et al. Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA-2002-0125, 2002.
[9] Mallinsom S G, Reizes J A, Hong G, et al. The operation and application of synthetic jet actuators. AIAA-2000-2402, 2000.
[10] 罗振兵, 朱伯鹏, 夏智勋, 等. 激励器结构参数对合成射流影响的试验研究[J]. 国防科技大学学报, 2004, 26(6): 9-14. Luo Zhenbing, Zhu Bopeng, Xia Zhixun, et al. Experimental study of the effects of the geogmetric parameters of actuator on synthetic jets[J]. Journal of National University of Defense Technology, 2004, 26(6): 9-14. (in Chinese)
[11] BS EN ISO 5167-2. Measurement of flow by means of pressure differential devices inserted in circular crosssection conduits running full—Part 2: Orifice plates[S]. 2003.
[12] 许晓慧. 基于PZT厚膜的MEMS微变形镜. 合肥: 中国科学技术大学工程科学学院, 2008. Xu Xiaohui. MEMS deformable mirror based on PZT thich film. Hefei: School of Engineering Science, University of Science and Technology of China, 2008. (in Chinese)
[13] 王蔚. MEMS兼容压电厚膜驱动技术. 哈尔滨: 哈尔滨工业大学航天学院, 2007. Wang Wei. Driving technology of piezoelectric thick film compatible with MEMS. Harbin: School of Astronautics, Harbin Institute of Technology, 2007. (in Chinese)
[14] 罗剑, 苑伟政, 邓进军, 等. 压电式微型合成射流多域耦合数值模拟[J]. 航空学报, 2009, 30(7): 1181-1186. Luo Jian, Yuan Weizheng, Deng Jinjun, et al. Multi-domain coupling numerical simulation of micro piezoelectric synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1181-1186. (in Chinese)
[15] 侯化国, 王玉民. 正交试验法[M]. 长春: 吉林人民出版社, 1985: 8-10. Hou Huaguo, Wang Yumin. Orthogonal experiment[M]. Changchun: Jilin People's Publishing House, 1985: 8-10. (in Chinese)
[16] 罗振兵. 合成射流流动机理及应用技术研究. 长沙: 国防科学技术大学航天与材料工程学院, 2002. Luo Zhenbing. Principle and applications of synthetic jet. Changsha: College of Aerospace and Materials Engineering, National University of Defense Technology, 2002. (in Chinese)