Articles

Spatial-temporal Fused Filtering for Infrared Clutter Suppression Based on Restricted Sequential M-estimation

Expand
  • 1. College of Electronic Science and Engineering, National University of Defense and Technology, Changsha 410073, China;
    2. Unit 75122, Chinese People's Liberation Army, Guilin 541000, China

Received date: 2010-09-19

  Revised date: 2010-12-16

  Online published: 2011-08-19

Abstract

Research is conducted on the intense clutter background removal so as to detect infrared small dim target. An adaptive spatial-temporal fused filtering algorithm for infrared clutter suppression is proposed based on restricted parametric sequential M-estimation. Firstly, an improved spatial-temporal fused prediction model for clutter background is presented on the analysis of the mismatch between the sequential images. And the image intensity is estimated by means of two-dimensional fast discrete Fourie transform (2DFT) and bilinear interpolation. Secondly, the model parameters are adaptively reckoned on restricted sequential M-estimation as the data sampled to double thresholds. Meanwhile, the forget factor and control factor are introduced to improve the robustness.The experiments show that the proposed algorithm not only perfectly removes the background under common circumstance but also effectively filters the intense clutter and preserves the targets signal,which holds fairly better performance and robust accommodation to environment than the existing ones.

Cite this article

LONG Yunli, XU Hui, AN Wei, LIN Liangkui . Spatial-temporal Fused Filtering for Infrared Clutter Suppression Based on Restricted Sequential M-estimation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(8) : 1531 -1541 . DOI: CNKI:11-1929/V.20110517.0903.001

References

[1] Tartakovsky A G, Brown J. Adaptive spatial-temporal filtering methods for clutter removal and target tracking[J]. IEEE Transactions on Aerospace and Electronic System, 2008, 44(4): 1522-1537.

[2] Wang J, Bao S Q, Ralph J F, et al. Detection of small objects in multi-layered infrared images//Signal and Data Processing of Small Targets, Proceedings of the SPIE. 2008, 6969: 696905-1-696905-8.

[3] Wemett B D. Automatic target detection using vector quantization error//Automatic Target Recognition XVIII, Proceedings of the SPIE. 2008, 6967: 696712-1-696712-10.

[4] 杨卫平, 沈振康. 起伏背景下的自适应门限检测方法[J]. 红外与毫米波学报, 1999, 18(2): 120-124. Yang Weiping, Shen Zhenkang. The detection method of adaptive threshold in undulant background[J]. Journal of Infrared Millimeter Waves, 1999, 18(2): 120-124. (in Chinese)

[5] 李红艳, 吴成柯. 一种基于小波和遗传算法的小目标检测算法[J]. 电子学报, 2001, 29(4): 439-442. Li Hongyan, Wu Chengke. Detecting dim small targets in image sequences based on wavelet transform and genetic algorithm[J]. Electronica Sinica, 2001, 29(4): 439-442. (in Chinese)

[6] 潘鸣, 裴云天, 吴贵臣. 强杂波背景下高空红外运动点目标检测[J]. 电波科学学报, 2004, 19(6): 757-766. Pan Ming, Pei Yuntian, Wu Guichen. Detection for moving infrared point target in high altitude with strong clutter background[J]. Chinese Journal of Radio Science, 2004, 19(6): 757-766. (in Chinese)

[7] 宗思光, 王江安. 基于形态学图像融合的目标检测方法 [J]. 光电子·激光, 2004, 15(2): 208-211. Zong Siguang, Wang Jiang'an. Infrared image targets detection based on multi-scale mathematical morphology fusion[J]. Journal of Optoelectronics Laser, 2004, 15(2): 208-211. (in Chinese)

[8] 余农, 吴长泳, 汤心溢, 等. 红外目标检测的自适应背景感知算法[J]. 电子学报, 2005, 33(2): 200-204. Yu Nong, Wu Changyong, Tang Xinyi, et al. Adaptive background perception algorithm for infrared target detection[J]. Acta Electronica Sinica, 2005, 33(2): 200-204. (in Chinese)

[9] 胡谋法, 陈曾平. 基于Zernike-facet模型和整体最小二乘的弱小目标检测[J]. 电子与信息学报, 2008, 30(1): 194-197. Hu Moufa, Chen Zengping. New small target detection algorithm via Zernike-facet model and the total least squares[J]. Journal of Electronics & Information Technology, 2008, 30(1): 194-197. (in Chinese)

[10] 胡谋法, 沈燕, 陈曾平. 自适应序贯M估计算法及其性能分析[J]. 电子学报, 2007, 35(9): 1651-1655. Hu Moufa, Shen Yan, Chen Zengping. New adaptive recursive M-estimation algorithm and its performance analysis[J]. Acta Electronica Sinica, 2007, 35(9): 1651-1655. (in Chinese)

[11] 刘靳, 姬红兵. 基于非平稳背景下的红外小目标检测[J]. 电子与信息学报, 2010, 32(6): 1295-1300. Liu Jin, Ji Hongbing. IR small targets detection based on non-homogenous background[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1295-1300. (in Chinese)

[12] 艾斯卡尔·艾木都拉, 地里木拉提·吐尔逊. 基于时空非参数回归估计的动态杂波抑制技术研究[J]. 通信学报, 2007, 28(3): 63-67. Askar Hamdulla, Dilmurat Tursun. Spatial-temporal non- parametic regression based approach for moving clutter suppression[J]. Journal of Communication, 2007, 28(3): 63-67. (in Chinese)

[13] Haykin S. Adaptive filter theory[M]. 4th ed. New Jersey: Prentice Hall, 2001.

[14] 罗军辉, 姬红兵, 刘靳. 一种基于空间滤波的红外小目标检测算法及其应用[J]. 红外与毫米波学报, 2007, 26(3): 209-212. Luo Junhui, Ji Hongbing, Liu Jin. Algorithm of IR small targets detection based on spatial filter and its application[J]. Journal of Infrared and Millimeter Wave, 2007, 26(3): 209-212. (in Chinese)

[15] Manuel S G, Samuel T T, James F R. Efficient sub-pixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158.
Outlines

/