Articles

Stabilization of Flexible Spacecraft Attitude Based on Backstepping Control

Expand
  • 1. School of Automation, Southeast University, Nanjing 210096, China;
    2. College of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

Received date: 2010-11-29

  Revised date: 2011-02-22

  Online published: 2011-08-19

Abstract

By utilizing the backstepping control technique, a control scheme with a flexible modal observer is deduced to stabilize a class of flexible spacecraft. First, a flexible modal observer is developed to recover the flexible variables and their rates. Second, regarding the angular velocities as the virtual controllers, virtual angular velocities are presented to stabilize the subsystem composed of a kinematic model and the flexible variables. Finally, based on the backstepping control technique, a nonlinear attitude controller is designed to force the angular velocities to track the virtual angular velocities, such that the stabilization of a flexible spacecraft is achieved. In the absence of external disturbances, the proposed controller can asymptotically stabilize a flexible spacecraft attitude control system. In the presence of bounded disturbances, the states will be stabilized to an adjustable region including the origin in finite time, the bounds of which are determined by controller parameters. Numerical simulation results show the effectiveness of the proposed method.

Cite this article

WANG Xiangyu, DING Shihong, LI Shihua . Stabilization of Flexible Spacecraft Attitude Based on Backstepping Control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(8) : 1512 -1523 . DOI: CNKI:11-1929/V.20110412.1530.004

References

[1] Liu S W, Singh T. Robust time-optimal control of flexible structures with parametric uncertainty[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1997, 119(4): 743-748.

[2] Sharma R, Tewari A. Optimal nonlinear tracking of spacecraft attitude maneuvers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5): 677-682.

[3] Shahravi M, Kabganian M, Alasty A. Adaptive robust attitude control of a flexible spacecraft[J]. International Journal of Robust and Nonlinear Control, 2006, 16(6): 287-302.

[4] Hu Q L. Robust adaptive backstepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of Sound and Vibration, 2009, 327(3/4/5): 285-298.

[5] 姜野, 胡庆雷, 马广富. 控制输入饱和的挠性航天器姿态机动智能鲁棒控制[J]. 宇航学报, 2009, 30(1): 188-192. Jiang Ye, Hu Qinglei, Ma Guangfu. Intelligent adaptive variable structure attitude maneuvering control for flexible spacecraft with actuator saturation[J]. Journal of Astronautics, 2009, 30(1): 188-192. (in Chinese)

[6] 朱良宽, 马广富, 胡庆雷. 挠性航天器鲁棒反步自适应姿态机动及主动振动抑制[J]. 振动与冲击, 2009, 28(2): 132-136. Zhu Liangkuan, Ma Guangfu, Hu Qinglei. Attitude maneuvering and vibration damping of flexible spacecraft via robust adaptive backstepping technique[J]. Journal of Vibration and Shock, 2009, 28(2): 132-136. (in Chinese)

[7] Jin E D, Sun Z W. Robust attitude tracking control of flexible spacecraft for achieving globally asymptotic stability[J]. International Journal of Robust and Nonlinear Control, 2009, 19(11): 1201-1223.

[8] Hu Q L, Cao J, Zhang Y Z. Robust backstepping sliding mode attitude tracking and vibration damping of flexible spacecraft with actuator dynamics[J]. Journal of Aerospace Engineering, 2009, 22(2): 139-152.

[9] Hu Q L, Ma G F. Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver[J]. Aerospace Science and Technology, 2005, 9(4): 307-317.

[10] 靳永强, 刘向东, 王伟, 等. 基于模态观测器的挠性航天器姿态控制[J]. 宇航学报, 2008, 29(3): 844-848. Jin Yongqiang, Liu Xiangdong, Wang Wei, et al. Sliding mode attitude control for flexible spacecraft based on modal observer[J]. Journal of Astronautics, 2008, 29(3): 844-848. (in Chinese)

[11] Khalil H K. 非线性系统[M]. 朱义胜, 董辉, 李作洲, 等, 译. 3版. 北京: 电子工业出版社, 2005: 437-449. Khalil H K. Nonlinear system[M]. Zhu Yisheng, Dong Hui, Li Zuozhou, et al., translated. 3rd ed. Beijing: Publishing House of Electronics Industry, 2005: 437-449. (in Chinese)

[12] Krstic M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049.

[13] Kristiansen R, Nichlasson P J. Satellite attitude control by quaternion-based backstepping//Proceedings of American Control Conference. 2005: 907-912.

[14] 郑敏捷, 徐世杰. 欠驱动航天器姿态控制系统的退步控制设计方法[J]. 宇航学报, 2006, 27(5): 947-951. Zheng Minjie, Xu Shijie. Backstepping control for attitude control system of an underactuated spacecraft[J]. Journal of Astronautics, 2006, 27(5): 947-951. (in Chinese)

[15] Li S H, Ding S H, Li Q. Global set stabilization of the spacecraft attitude control problem based on quaternion[J]. International Journal of Robust and Nonlinear Control, 2010, 20(1): 84-105.

[16] Ding S H, Li S H. Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques[J]. Aerospace Science and Technology, 2009, 13(4-5): 256-265.

[17] Di Gennaro S. Output attitude tracking for flexible spacecraft[J]. Automatica, 2002, 38(10): 1719-1726.

[18] Di Gennaro S. Output stabilization of flexible spacecraft with active vibration suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 747-759.

[19] Di Gennaro S. Passive attitude control of flexible spacecraft from quaternion measurements[J]. Journal of Optimization Theory and Applications, 2003, 116(1): 41-60.
Outlines

/