Avionics and Autocontrol

Optimal Reconstruction Algorithm for 3D Terrain Information Based on 1D Range Data of Airborne Single-antenna Radar

Expand
  • Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

Received date: 2010-09-09

  Revised date: 2011-02-16

  Online published: 2011-07-23

Abstract

Under the arbitrary relative motion of airborne radar, the rigid ground surface holds the geometry invariance. Based on this restriction, the 3D terrain information and the unknown motion path of the carrier-aircraft can be reconstructed using the 1D range data of some strong scatterers extracted from the radar range image. Considering the problem that current reconstruction algorithms based on far-field assumption are incompetent for reconstructing the ground target which involves larger near-field range errors, an optimal reconstruction algorithm based on near-field model of the radar range measurement is proposed and it achieves the bundle adjustment for the reconstructed parameters by utilizing the nonlinear optimization. The simulations verify that, the reconstructed precision of this algorithm is of remarkable improvement for near-field target and, hence, the high precision geometric reconstruction for the terrain’s 3D information under the arbitrary unknown 3D motion of the airborne single-antenna radar is realized.

Cite this article

ZHANG Yingkang, XIAO Yang . Optimal Reconstruction Algorithm for 3D Terrain Information Based on 1D Range Data of Airborne Single-antenna Radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(7) : 1292 -1301 . DOI: CNKI:11-1929/V.20110426.1120.006

References

[1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 229-344. Bao Zheng, Xing Mengdao, Wang Tong. Radar image technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 229-344. (in Chinese)

[2] Xiang Z, Wang K Z, Liu X Z. A model-spectrum-based flattening algorithm for airborne single-pass SAR interferometry[J]. IEEE Geosciences and Remote Sensing Letters, 2009, 6(2): 307-311.

[3] Wang G Y, Xia X G, Chen V C. Three dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436-448.

[4] Xu X J, Narayanan R M. Three dimensional interferometric ISAR imaging for target scatterring diagnosis and modeling[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1094-1102.

[5] Mayhan J T, Burrows M L, Cuomo K M, et al. High resolution 3D snapshot ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-642.

[6] 任双桥, 刘永祥, 黎湘, 等. 基于多姿态角下一维距离像的雷达目标三维成像[J]. 电子学报, 2005, 33(6): 1088-1090. Ren Shuangqiao, Liu Yongxiang, Li Xiang, et al. Radar target 3-D imaging based on multi-aspect range profiles[J]. Acta Electronica Sinica, 2005, 33(6): 1088-1090. (in Chinese)

[7] Bryant M L, Gostin L L, Soumekh M. 3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 211-227.

[8] Xing M D, Wang G Y, Bao Z. A matched-filter-bank-based 3D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2106-2113.

[9] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230-274. Huang Peikang, Yin Hongcheng, Xu Xiaojian. Radar target characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 230-274. (in Chinese)

[10] Stuff M, Sanchez P, Biancala M. Extraction of three-dimensional motion and geometric invariants[J]. Multidimensional Systems and Signal Processing, 2003, 14(1-3): 161-181.

[11] Ferrara M, Arnold G, Stuff M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906-1912.

[12] 周剑雄. 光学区雷达目标三维散射中心重构理论与技术. 长沙: 国防科学技术大学, 2008: 64-66. Zhou Jianxiong. Theory and technology on reconstructing 3D scattering centers of radar targets in optical region. Changsha: National University of Defense Technology, 2008: 64-66. (in Chinese)

[13] 刘永祥, 吕玉增, 黎湘, 等.多姿态角下的目标散射中心关联与成像方法研究[J]. 信号处理, 2008, 24(2): 168-171. Liu Yongxiang, Lv Yuzeng, Li Xiang, et al. Scattering centers association and imaging based on multi-aspect measurement[J]. Signal Processing, 2008, 24(2): 168-171. (in Chinese)

[14] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. London: Cambridge University Press, 2000: 434-497.

[15] Triggs B, McLauchlan P F, Hartley R I. Bundle adjustment—a modern synthesis//Proceedings of the Inter- national Workshop on Vision Algorithms: Theory and Practice. London: Springer-Verlag, 2000: 298-375.
Outlines

/