To accelerate the convergence of a terminal sliding mode and avoid the singularity of the controller, an analysis for the cause of singularity in terminal sliding mode is presented in this paper. Based on Lie algebra,the nonsingular criterion is provided for the terminal sliding mode controller. Thereafter, two novel nonsingular fast terminal sliding modes are designed with convergence speed faster than that of a normal fast terminal sliding mode at any points. The formula of convergence time is derived. The new fast terminal sliding mode is combined with the dynamic sliding mode to eliminate chattering. Then, controllers are designed for the fast loop and slow loop of a near space vehicle. In order to improve the control effect, a nonlinear disturbance observer is used to approximate the compound disturbances. By means of the Lyapunov theorem, the system is proved to be stable. Finally, simulation is conducted.
PU Ming, WU Qingxian, JIANG Changsheng, CHENG Lu
. New Fast Terminal Sliding Mode and Its Application to Near Space Vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(7)
: 1283
-1291
.
DOI: CNKI:11-1929/V.20110330.1325.008
[1] 董朝阳, 王枫, 高晓颖, 等. 基于自适应滑模与模糊控制的导弹直接力/气动力复合控制系统优化设计[J]. 航空学报, 2008, 29(1): 165-169. Dong Chaoyang, Wang Feng, Gao Xiaoying, et al. Missile reaction-jet/aerodynamic compound control system design based on adaptive sliding mode control and fuzzy logic[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 165-169. (in Chinese)
[2] Jin Y Q, Liu X D, Qiu W, et al. Time varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4): 352-360.
[3] Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems, 1997, 44(11): 1065-1070.
[4] Yu S H, Yu X H, Man Z H. A fuzzy neural network approximator with fast terminal sliding mode and its applications[J]. Fuzzy Sets and Systems, 2004, 148(3): 469-486.
[5] 王新华, 陈增强, 袁著祉. 全程快速非线性跟踪-微分器[J]. 控制理论与应用, 2003, 20(6): 875-878. Wang Xinhua, Chen Zengqiang, Yuan Zhuzhi. Nonlinear tracking differentiator with high speed in whole course[J]. Journal of Control Theory and Applications, 2003, 20(6): 875-878. (in Chinese)
[6] 史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6): 647-650. Shi Yongli, Hou Chaozhen. Design of improved nonlinear tracking differentiator [J]. Journal of Control and Decision, 2008, 23(6): 647-650. (in Chinese)
[7] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469.
[8] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167.
[9] 张军. 近空间飞行器非线性不确定飞行运动的鲁棒自适应控制. 南京: 南京航空航天大学自动化学院, 2009. Zhang Jun. Robust adaptive control for nonlinear uncertain flight moving systems of near space vehicle . Nanjing: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
[10] 王高雄, 周之铭. 常微分方程[M]. 北京: 高等教育出版社, 2006. Wang Gaoxiong, Zhou Zhiming. Ordinary differential equation [M]. Beijing: High Education Press, 2006. (in Chinese)
[11] Chen W H. A nonlinear disturbance observer for robotic manipulators [J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.
[12] 吴玉香, 胡跃明. 二阶动态滑模控制在移动机械臂输出跟踪中的应用[J]. 控制理论与应用, 2006, 23(3): 411-415. Wu Yuxiang, Hu Yueming. Second order dynamic sliding mode control and its application to output tracking of mobile manipulators [J]. Journal of Control Theory and Applications, 2006, 23(3): 411-415. (in Chinese)
[13] Levant A. High-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9-10): 924-941.
[14] Levant A. Finite differences in homogeneous discontinuous control[J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1208-1217.
[15] 黄国勇, 姜长生, 王玉惠. 基于快速模糊干扰观测器的UASV再入Terminal滑模控制[J]. 宇航学报, 2007, 28(2): 292-297. Huang Guoyong, Jiang Changsheng, Wang Yuhui. Research of terminal sliding mode control based on fast fuzzy disturbance observer for UASV re-entry [J]. Journal of Astronautics, 2007, 28(2): 292-297. (in Chinese)